Chapter 9. Further Applications of Integration

 9.1 Slope Fields and Separable Differential EquationsDefinition. A first-order differential equation is a relation

$$
\frac{d y}{d x}=f(x, y)
$$

in which $f(x, y)$ is a function of two variables defined on a region in the $x y$-plane. A solution of this equation is a differentiable function $y=y(x)$ defined on an interval of x-values such that

$$
\frac{d}{d x}[y(x)]=f(x, y(x))
$$

on that interval. The initial condition that $y\left(x_{0}\right)=y_{0}$ amounts to requiring the solution curve $y=y(x)$ to pass though the point $\left(x_{0}, y_{0}\right)$.

Example. Page 648 number 6.

Note. We can graph little hash-marks to indicate the slope $d y / d x=$ $f(x, y)$ at various points in the $x y$ - plane to give some idea of the "flow" of a solution. Such a collection of hash-marks is called a slope field for the differential equation.

Example. The slope field for the differential equation $\frac{d y}{d x}=y-x$ is given below, along with the particular solution which passes through the point ($0,2 / 3$).

(a)

(b)

Figure 9.2, page 644.

Example. Page 649 number 24.

Definition. The equation $y^{\prime}=f(x, y)$ is separable if f can be expressed as a product of a function of x and a functions of y. The differential equation then has the form

$$
\frac{d y}{d x}=g(x) h(y) .
$$

Note. If $h(y) \neq 0$, we can separate the variables by dividing both sides by h, obtaining

$$
\begin{aligned}
\frac{1}{h(y)} \frac{d y}{d x} & =g(x) \\
\int \frac{1}{h(y)} \frac{d y}{d x} d x & =\int g(x) d x \\
\int \frac{1}{h(y)} d y & =\int g(x) d x
\end{aligned}
$$

(Notice that the last two lines claim that two sets are equal.) With x and y now separated, we simply integrate each side to get the solutions. We seek by expressing y either explicitly or implicitly as a function of x, up to an arbitrary constant.

Example. Page 648 number 12.

