Chapter 1. Vectors, Matrices, and Linear Systems
Section 1.1. Vectors in Euclidean Spaces—Proofs of Theorems
<table>
<thead>
<tr>
<th></th>
<th>Table of contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Page 16 Number 10</td>
</tr>
<tr>
<td>2</td>
<td>Page 16 Number 14</td>
</tr>
<tr>
<td>3</td>
<td>Page 17 Number 40(a)</td>
</tr>
<tr>
<td>4</td>
<td>Page 17 Number 41(a)</td>
</tr>
<tr>
<td>5</td>
<td>Page 16 Number 22</td>
</tr>
<tr>
<td>6</td>
<td>Page 16 Number 28</td>
</tr>
</tbody>
</table>
Page 16 Number 10

Page 16 Number 10. Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where \(\vec{u} = [1, 2, 1, 0], \vec{v} = [-2, 0, 1, 6], \) and \(\vec{w} = [3, -5, 1, -2]. \)

Solution. We have

\[
3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2] \\
= [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2] \\
\text{by Definition 1.1(3), "Scalar Multiplication"} \\
= [3, 6, 3, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2] \text{ simplifying}
\]
Page 16 Number 10

Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $
\vec{u} = [1, 2, 1, 0], \ \vec{v} = [-2, 0, 1, 6], \text{ and } \vec{w} = [3, -5, 1, -2].$

Solution. We have

\[
3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]
\]

\[
= [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]
\]

by Definition 1.1(3), “Scalar Multiplication”

\[
= [3, 6, 3, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]
\]

simplifying

\[
= [3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]
\]

by Definition 1.1(1), “Vector Addition”

\[
= [1, 6, 4, 6] - [3, -5, 1, -2]
\]

simplifying
Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0]$, $\vec{v} = [-2, 0, 1, 6]$, and $\vec{w} = [3, -5, 1, -2]$.

Solution. We have

$$3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$$

by Definition 1.1(3), “Scalar Multiplication”

$$= [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]$$

simplifying

$$= [3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]$$

by Definition 1.1(1), “Vector Addition”

$$= [1, 6, 4, 6] - [3, -5, 1, -2]$$

simplifying

$$= [1 - (3), 6 - (-5), 4 - (1), 6 - (-2)]$$

by Definition 1.1(2), “Vector Subtraction”

$$= [-2, 11, 3, 8]$$

simplifying.

So we conclude $3\vec{u} + \vec{v} - \vec{w} = [-2, 11, 3, 8]$. □
Compute the linear combination $3\vec{u} + \vec{v} - \vec{w}$ where $\vec{u} = [1, 2, 1, 0]$, $\vec{v} = [-2, 0, 1, 6]$, and $\vec{w} = [3, -5, 1, -2]$.

Solution. We have

$$3\vec{u} + \vec{v} - \vec{w} = 3[1, 2, 1, 0] + [-2, 0, 1, 6] - [3, -5, 1, -2]$$

by Definition 1.1(3), "Scalar Multiplication"

$$= [3(1), 3(2), 3(1), 3(0)] + [-2, 0, 1, 6] - [3, -5, 1, -2]$$

simplifying

$$= [3 + (-2), 6 + 0, 3 + 1, 0 + 6] - [3, -5, 1, -2]$$

by Definition 1.1(1), "Vector Addition"

$$= [1 + 6, 4, 4 + 1, 6] - [3, -5, 1, -2]$$

simplifying

$$= [1 - (3), 6 - (-5), 4 - (1), 6 - (-2)]$$

by Definition 1.1(2), "Vector Subtraction"

$$= [-2, 11, 3, 8]$$

So we conclude $3\vec{u} + \vec{v} - \vec{w} = [-2, 11, 3, 8]$. □
Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), “Scalar Multiplication,” and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:
Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), “Scalar Multiplication,” and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:
Page 16 Number 14. Reproduce the vectors in this figure and draw an arrow representing $-3\vec{u} + 2\vec{w}$.

Solution. From Definition 1.1(3), “Scalar Multiplication,” and the geometric interpretation of vectors (see the class notes, pages 2, 3, and 4) we represent $-3\vec{u}$ and $2\vec{w}$ as:
Then by the parallelogram property of addition:
Let \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \) and let \(r, s \) be scalars in \(\mathbb{R} \).

Prove (A1): \((\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})\).

Proof. Since \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \), by Definition 1.A, “Vectors in \(\mathbb{R}^n \),” we have that
\[
\vec{u} = [u_1, u_2, \ldots, u_n], \quad \vec{v} = [v_1, v_2, \ldots, v_n], \quad \text{and} \quad \vec{w} = [w_1, w_2, \ldots, w_n],
\]
where all \(u_i, v_i, \) and \(w_i \) are real numbers.
Page 17 Number 40(a). Let \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \) and let \(r, s \) be scalars in \(\mathbb{R} \). Prove \((A1)\): \((\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})\).

Proof. Since \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \), by Definition 1.A, “Vectors in \(\mathbb{R}^n \),” we have that \(\vec{u} = [u_1, u_2, \ldots, u_n] \), \(\vec{v} = [v_1, v_2, \ldots, v_n] \), and \(\vec{w} = [w_1, w_2, \ldots, w_n] \) where all \(u_i, v_i, \) and \(w_i \) are real numbers. Then

\[
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \ldots, u_n] + [v_1, v_2, \ldots, v_n]) + [w_1, w_2, \ldots, w_n]
\]

\[
= [u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n] + [w_1, w_2, \ldots, w_n]
\]

by Definition 1.1(1), “Vector Addition”
Let \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \) and let \(r, s \) be scalars in \(\mathbb{R} \).

Prove (A1): \((\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})\).

Proof. Since \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \), by Definition 1.A, “Vectors in \(\mathbb{R}^n \),” we have that \(\vec{u} = [u_1, u_2, \ldots, u_n] \), \(\vec{v} = [v_1, v_2, \ldots, v_n] \), and \(\vec{w} = [w_1, w_2, \ldots, w_n] \) where all \(u_i, v_i, \) and \(w_i \) are real numbers. Then

\[
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \ldots, u_n] + [v_1, v_2, \ldots, v_n]) + [w_1, w_2, \ldots, w_n]
\]

\[
= [u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n] + [w_1, w_2, \ldots, w_n]
\]

by Definition 1.1(1), “Vector Addition”

\[
= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \ldots, (u_n + v_n) + w_n]
\]

by Definition 1.1(1), “Vector Addition”
Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R}. Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof. Since $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.1A, “Vectors in \mathbb{R}^n,” we have that $\vec{u} = [u_1, u_2, \ldots, u_n]$, $\vec{v} = [v_1, v_2, \ldots, v_n]$, and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all u_i, v_i, and w_i are real numbers. Then

$$
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \ldots, u_n] + [v_1, v_2, \ldots, v_n]) + [w_1, w_2, \ldots, w_n]
$$

$$
= [u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n] + [w_1, w_2, \ldots, w_n]
$$

by Definition 1.1(1), “Vector Addition”

$$
= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \ldots, (u_n + v_n) + w_n]
$$

by Definition 1.1(1), “Vector Addition”

$$
= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \ldots, u_n + (v_n + w_n)]
$$

since addition of real numbers is associative.
Page 17 Number 40(a). Let \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \) and let \(r, s \) be scalars in \(\mathbb{R} \).

Prove (A1): \((\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})\).

Proof. Since \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \), by Definition 1.1A, "Vectors in \(\mathbb{R}^n \)," we have that

\[
\vec{u} = [u_1, u_2, \ldots, u_n], \quad \vec{v} = [v_1, v_2, \ldots, v_n], \quad \text{and} \quad \vec{w} = [w_1, w_2, \ldots, w_n]
\]

where all \(u_i, v_i, \) and \(w_i \) are real numbers. Then

\[
(\vec{u} + \vec{v}) + \vec{w} = ([u_1, u_2, \ldots, u_n] + [v_1, v_2, \ldots, v_n]) + [w_1, w_2, \ldots, w_n] \\
= [u_1 + v_1, u_2 + v_2, \ldots, u_n + v_n] + [w_1, w_2, \ldots, w_n] \\
\text{by Definition 1.1(1), "Vector Addition"} \\
= [(u_1 + v_1) + w_1, (u_2 + v_2) + w_2, \ldots, (u_n + v_n) + w_n] \\
\text{by Definition 1.1(1), "Vector Addition"} \\
= [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \ldots, u_n + (v_n + w_n)]
\]

since addition of real numbers is associative.
Page 17 Number 40(a). Let \(\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n \) and let \(r, s \) be scalars in \(\mathbb{R} \). Prove (A1): \((\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})\).

Proof (continued). . . .

\[
(\vec{u} + \vec{v}) + \vec{w} = \left[u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \ldots, u_n + (v_n + w_n) \right] \\
= \left[u_1, u_2, \ldots, u_n \right] + \left[v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n \right] \\
\text{by Definition 1.1(1), “Vector Addition”}
\]
Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n \) and let \(r, s \) be scalars in \(\mathbb{R} \).

Prove (A1): \((\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})\).

Proof (continued).

\[
(\mathbf{u} + \mathbf{v}) + \mathbf{w} = [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \ldots, u_n + (v_n + w_n)]
\]
\[
= [u_1, u_2, \ldots, u_n] + [v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n]
\]
by Definition 1.1(1), “Vector Addition”
\[
= [u_1, u_2, \ldots, u_n] + ([v_1, v_2, \ldots, v_n] + [w_1, w_2, \ldots, w_n])
\]
by Definition 1.1(1), “Vector Addition”
\[
= \mathbf{u} + (\mathbf{v} + \mathbf{w}).
\]
Page 17 Number 40(a). Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and let r, s be scalars in \mathbb{R}.
Prove (A1): $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Proof (continued). . . .

$$\begin{align*}
(\vec{u} + \vec{v}) + \vec{w} & = [u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), \ldots, u_n + (v_n + w_n)] \\
& = [u_1, u_2, \ldots, u_n] + [v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n] \\
& \text{by Definition 1.1(1), "Vector Addition"} \\
& = [u_1, u_2, \ldots, u_n] + ([v_1, v_2, \ldots, v_n] + [w_1, w_2, \ldots, w_n]) \\
& \text{by Definition 1.1(1), "Vector Addition"} \\
& = \vec{u} + (\vec{v} + \vec{w}).
\end{align*}$$
Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R}. Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof. Since $\vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, “Vectors in \mathbb{R}^n,” we have that $\vec{v} = [v_1, v_2, \ldots, v_n]$ and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all v_i and w_i are real numbers.
Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R}. Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof. Since $\vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, “Vectors in \mathbb{R}^n,” we have that $\vec{v} = [v_1, v_2, \ldots, v_n]$ and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all v_i and w_i are real numbers. Then

\[
\begin{align*}
 r(\vec{v} + \vec{w}) &= r([v_1, v_2, \ldots, v_n] + [w_1, w_2, \ldots, w_n]) \\
 &= r[v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n] \\
 &\quad \text{by Definition 1.1(1), “Vector Addition”}
\end{align*}
\]
Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R}. Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof. Since $\vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.A, “Vectors in \mathbb{R}^n,” we have that $\vec{v} = [v_1, v_2, \ldots, v_n]$ and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all v_i and w_i are real numbers. Then

$$r(\vec{v} + \vec{w}) = r([v_1, v_2, \ldots, v_n] + [w_1, w_2, \ldots, w_n])$$

$$= r[v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n]$$

by Definition 1.1(1), “Vector Addition”

$$= [r(v_1 + w_1), r(v_2 + w_2), \ldots, r(v_n + w_n)]$$

by Definition 1.1(3), “Scalar Multiplication”
Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R}. Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof. Since $\vec{v}, \vec{w} \in \mathbb{R}^n$, by Definition 1.1A, “Vectors in \mathbb{R}^n,” we have that $\vec{v} = [v_1, v_2, \ldots, v_n]$ and $\vec{w} = [w_1, w_2, \ldots, w_n]$ where all v_i and w_i are real numbers. Then

\[
\begin{align*}
 r(\vec{v} + \vec{w}) &= r([v_1, v_2, \ldots, v_n] + [w_1, w_2, \ldots, w_n]) \\
 &= r[v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n] \\
 &= [r(v_1 + w_1), r(v_2 + w_2), \ldots, r(v_n + w_n)] \\
 &= [rv_1 + rw_1, rv_2 + rw_2, \ldots, rv_n + rw_n]
\end{align*}
\]

by Definition 1.1(1), “Vector Addition”

by Definition 1.1(3), “Scalar Multiplication”

since multiplication distributes over addition in the real numbers...
Let \(\vec{v}, \vec{w} \in \mathbb{R}^n \) and let \(r \) be a scalar in \(\mathbb{R} \). Prove (S1):
\[r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}. \]

Proof. Since \(\vec{v}, \vec{w} \in \mathbb{R}^n \), by Definition 1.A, “Vectors in \(\mathbb{R}^n \),” we have that \(\vec{v} = [v_1, v_2, \ldots, v_n] \) and \(\vec{w} = [w_1, w_2, \ldots, w_n] \) where all \(v_i \) and \(w_i \) are real numbers. Then

\[
\begin{align*}
 r(\vec{v} + \vec{w}) &= r([v_1, v_2, \ldots, v_n] + [w_1, w_2, \ldots, w_n]) \\
 &= r[v_1 + w_1, v_2 + w_2, \ldots, v_n + w_n] \\
 & \quad \text{by Definition 1.1(1), “Vector Addition”} \\
 &= [r(v_1 + w_1), r(v_2 + w_2), \ldots, r(v_n + w_n)] \\
 & \quad \text{by Definition 1.1(3), “Scalar Multiplication”} \\
 &= [rv_1 + rw_1, rv_2 + rw_2, \ldots, rv_n + rw_n] \\
 & \quad \text{since multiplication distributes} \\
 & \quad \text{over addition in the real numbers...}
\end{align*}
\]
Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R}. Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof (continued). . .

\[
\begin{align*}
r(\vec{v} + \vec{w}) &= [rv_1 + rw_1, rv_2 + rw_2, \ldots, rv_n + rw_n] \\
&= [rv_1, rv_2, \ldots, rv_n] + [rw_1, rw_2, \ldots, rw_n] \\
&\quad \text{by Definition 1.1(1), “Vector Addition”} \\
&= r[v_1, v_2, \ldots, v_n] + r[w_1, w_2, \ldots, w_n] \\
&\quad \text{by Definition 1.1(3), “Scalar Multiplication”} \\
&= r\vec{v} + r\vec{w}.
\end{align*}
\]
Page 17 Number 41(a). Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ and let r be a scalar in \mathbb{R}. Prove (S1): $r(\vec{v} + \vec{w}) = r\vec{v} + r\vec{w}$.

Proof (continued). . .

d_r(\vec{v} + \vec{w}) = \begin{bmatrix} rv_1 + rw_1, rv_2 + rw_2, \ldots, rv_n + rw_n \end{bmatrix} \\
= \begin{bmatrix} rv_1, rv_2, \ldots, rv_n \end{bmatrix} + \begin{bmatrix} rw_1, rw_2, \ldots, rw_n \end{bmatrix} \\
by \text{Definition 1.1(1), "Vector Addition"}
= r\begin{bmatrix} v_1, v_2, \ldots, v_n \end{bmatrix} + r\begin{bmatrix} w_1, w_2, \ldots, w_n \end{bmatrix} \\
by \text{Definition 1.1(3), "Scalar Multiplication"}
= r\vec{v} + r\vec{w}.
Find all scalars c (if any) such that the vector $[c^2, -4]$ is parallel to the vector $[1, -2]$.

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say $[c^2, -4] = r[1, -2]$ for scalar $r \in \mathbb{R}$. Then by Definition 1.1(3), “Scalar Multiplication,” $[c^2, -4] = [r, -2r]$.
Page 16 Number 22. Find all scalars \(c \) (if any) such that the vector \([c^2, -4]\) is parallel to the vector \([1, -2]\).

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say \([c^2, -4] = r [1, -2]\) for scalar \(r \in \mathbb{R} \). Then by Definition 1.1(3), “Scalar Multiplication,” \([c^2, -4] = [r, -2r]\). So we need both \(c^2 = r \) and \(-4 = -2r\). Since \(-4 = -2r\) then we must have \(r = 2 \). With \(r = 2 \) and \(c^2 = r = 2 \) we must have that either \(c = \sqrt{2} \) or \(c = -\sqrt{2} \). □
Page 16 Number 22. Find all scalars \(c \) (if any) such that the vector \([c^2, -4]\) is parallel to the vector \([1, -2]\).

Solution. By Definition 1.2, two nonzero vectors are parallel if one is a scalar multiple of the other, say \([c^2, -4] = r[1, -2]\) for scalar \(r \in \mathbb{R} \). Then by Definition 1.1(3), “Scalar Multiplication,” \([c^2, -4] = [r, -2r]\). So we need both \(c^2 = r \) and \(-4 = -2r\). Since \(-4 = -2r\) then we must have \(r = 2\). With \(r = 2 \) and \(c^2 = r = 2 \) we must have that either \(c = \sqrt{2} \) or \(c = -\sqrt{2} \). □
Page 16 Number 28

Page 16 Number 28. Find all scalars c (if any) such that the vector $\vec{v} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$.

Solution. By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is

$$\vec{v} + c\vec{j} + (c - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$$

for some $r_1, r_2 \in \mathbb{R}$?
Find all scalars c (if any) such that the vector $\vec{i} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$.

Solution. By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is

$$\vec{i} + c\vec{j} + (c - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$$

for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}$.

So we need $c \in \mathbb{R}$ such that

$$1 = r_1 + 3r_2 \quad (1)$$

$$c = 2r_1 + 6r_2 \quad (2)$$

$$c - 1 = r_1 + 3r_2 \quad (3)$$

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see that we need $c = 2$. With $c = 2$, equation (3) gives $1 = r_1 + 3r_2$ which is (1). Therefore all three equations (1), (2), and (3) are satisfied when $c = 2$. We can take $r_1 = 1$ and $r_2 = 0$, for example. □
Page 16 Number 28. Find all scalars \(c \) (if any) such that the vector \(\vec{i} + c\vec{j} + (c - 1)\vec{k} \) is in the span of \(\vec{i} + 2\vec{j} + \vec{k} \) and \(3\vec{i} + 6\vec{j} + 3\vec{k} \).

Solution. By Definition 1.4, the span of \(\vec{i} + 2\vec{j} + \vec{k} \) and \(3\vec{i} + 6\vec{j} + 3\vec{k} \) is the set of all linear combinations of these two vectors. So the question becomes: For which \(c \in \mathbb{R} \) is

\[
\vec{i} + c\vec{j} + (c - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})
\]

for some \(r_1, r_2 \in \mathbb{R} \)?

If this holds, \(\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k} \).

So we need \(c \in \mathbb{R} \) such that

\[
\begin{align*}
1 &= r_1 + 3r_2 \quad (1) \\
c &= 2r_1 + 6r_2 \quad (2) \\
c - 1 &= r_1 + 3r_2 \quad (3)
\end{align*}
\]

Multiplying (1) by 2 gives \(2 = 2r_1 + 6r_2 \). Combining this with (2) we see that we need \(c = 2 \).
Page 16 Number 28. Find all scalars c (if any) such that the vector $\vec{i} + c\vec{j} + (c - 1)\vec{k}$ is in the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$.

Solution. By Definition 1.4, the span of $\vec{i} + 2\vec{j} + \vec{k}$ and $3\vec{i} + 6\vec{j} + 3\vec{k}$ is the set of all linear combinations of these two vectors. So the question becomes: For which $c \in \mathbb{R}$ is $\vec{i} + c\vec{j} + (c - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})$ for some $r_1, r_2 \in \mathbb{R}$? If this holds, $\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k}$.

So we need $c \in \mathbb{R}$ such that

\[
\begin{align*}
1 &= r_1 + 3r_2 \quad (1) \\
c &= 2r_1 + 6r_2 \quad (2) \\
c - 1 &= r_1 + 3r_2 \quad (3)
\end{align*}
\]

Multiplying (1) by 2 gives $2 = 2r_1 + 6r_2$. Combining this with (2) we see that we need $c = 2$. With $c = 2$, equation (3) gives $1 = r_1 + 3r_2$ which is (1). Therefore all three equations (1), (2), and (3) are satisfied when $c = 2$. We can take $r_1 = 1$ and $r_2 = 0$, for example. □
Find all scalars \(c \) (if any) such that the vector \(\vec{i} + c\vec{j} + (c - 1)\vec{k} \) is in the span of \(\vec{i} + 2\vec{j} + \vec{k} \) and \(3\vec{i} + 6\vec{j} + 3\vec{k} \).

Solution. By Definition 1.4, the span of \(\vec{i} + 2\vec{j} + \vec{k} \) and \(3\vec{i} + 6\vec{j} + 3\vec{k} \) is the set of all linear combinations of these two vectors. So the question becomes: For which \(c \in \mathbb{R} \) is

\[
\vec{i} + c\vec{j} + (c - 1)\vec{k} = r_1(\vec{i} + 2\vec{j} + \vec{k}) + r_2(3\vec{i} + 6\vec{j} + 3\vec{k})
\]

for some \(r_1, r_2 \in \mathbb{R} \)? If this holds, \(\vec{i} + c\vec{j} + (c - 1)\vec{k} = (r_1 + 3r_2)\vec{i} + (2r_1 + 6r_2)\vec{j} + (r_1 + 3r_2)\vec{k} \).

So we need \(c \in \mathbb{R} \) such that

\[
\begin{align*}
1 &= r_1 + 3r_2 \\
c &= 2r_1 + 6r_2 \\
c - 1 &= r_1 + 3r_2
\end{align*}
\]

Multiplying (1) by 2 gives \(2 = 2r_1 + 6r_2 \). Combining this with (2) we see that we need \(c = 2 \). With \(c = 2 \), equation (3) gives \(1 = r_1 + 3r_2 \) which is (1). Therefore all three equations (1), (2), and (3) are satisfied when \(c = 2 \). We can take \(r_1 = 1 \) and \(r_2 = 0 \), for example. □