Chapter 1. Vectors, Matrices, and Linear Systems
Section 1.5. Inverses of Square Matrices—Proofs of Theorems
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Example 1.5.A</td>
</tr>
<tr>
<td>2</td>
<td>Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b}</td>
</tr>
<tr>
<td>3</td>
<td>Page 84 Number 12</td>
</tr>
<tr>
<td>4</td>
<td>Theorem 1.11. A Commutivity Property</td>
</tr>
<tr>
<td>5</td>
<td>Page 84 Number 4</td>
</tr>
<tr>
<td>6</td>
<td>Page 85 Number 24</td>
</tr>
<tr>
<td>7</td>
<td>Page 86 Number 30</td>
</tr>
</tbody>
</table>
Example 1.5.A

Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2.

Solution. We have $E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2.

Solution. We have $E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. To invert the operation of interchanging Row 1 and Row 3 we simply interchange them again. To invert the operation of multiplying Row 2 by 7 we divide Row 2 by 7.
Example 1.5.A

Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2.

Solution. We have $E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. To invert the operation of interchanging Row 1 and Row 3 we simply interchange them again. To invert the operation of multiplying Row 2 by 7 we divide Row 2 by 7. So we expect $E_1^{-1} = E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. We can easily verify that $E_1E_1^{-1} = \mathcal{I}$ and $E_2E_2^{-1} = \mathcal{I}$. □
Example 1.5.A. It is easy to invert an elementary matrix. For example, suppose E_1 interchanges Row 1 and Row 2 of a 3×3 matrix. Suppose E_2 multiplies Row 2 by 7 in a 3×3 matrix. Find the inverses of E_1 and E_2.

Solution. We have $E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. To invert the operation of interchanging Row 1 and Row 3 we simply interchange them again. To invert the operation of multiplying Row 2 by 7 we divide Row 2 by 7. So we expect $E_1^{-1} = E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/7 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. We can easily verify that $E_1 E_1^{-1} = I$ and $E_2 E_2^{-1} = I$. □
Lemma 1.1

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b}.
Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix I.

Proof. Suppose A is row equivalent to I. Let \vec{b} by any column vector in \mathbb{R}^n. Then $[A \mid \vec{b}] \sim [I \mid \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.
Lemma 1.1

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b}.
Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix I.

Proof. Suppose A is row equivalent to I. Let \vec{b} by any column vector in \mathbb{R}^n. Then $[A \mid \vec{b}] \sim [I \mid \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.

Suppose A is not row equivalent to I. Row reduce A to a reduced row echelon form H (so $H \neq I$). So the last row (i.e., the nth row) of H must be all zeros.
Lemma 1.1

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b}.

Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix I.

Proof. Suppose A is row equivalent to I. Let \vec{b} by any column vector in \mathbb{R}^n. Then $[A | \vec{b}] \sim [I | \vec{c}]$ for some column vector $\vec{c} \in \mathbb{R}^n$. Then, by Theorem 1.6, $\vec{x} = \vec{c}$ is a solution to $A\vec{x} = \vec{b}$.

Suppose A is not row equivalent to I. Row reduce A to a reduced row echelon form H (so $H \neq I$). So the last row (i.e., the nth row) of H must be all zeros. Now the row reduction of A to H can be accomplished by multiplication on the left by a sequence of elementary matrices by repeated application of Theorem 1.8, “Use of Elementary Matrices.” Say $E_t \cdots E_2 E_1 A = H$. Now elementary matrices are invertible (see Example 1.5.A).
Lemma 1.1

Lemma 1.1. Condition for \(A\vec{x} = \vec{b} \) to be Solvable for \(\vec{b} \).
Let \(A \) be an \(n \times n \) matrix. The linear system \(A\vec{x} = \vec{b} \) has a solution for every choice of column vector \(\vec{b} \in \mathbb{R}^n \) if and only if \(A \) is row equivalent to the \(n \times n \) identity matrix \(\mathcal{I} \).

Proof. Suppose \(A \) is row equivalent to \(\mathcal{I} \). Let \(\vec{b} \) by any column vector in \(\mathbb{R}^n \). Then \([A \mid \vec{b}] \sim [\mathcal{I} \mid \vec{c}]\) for some column vector \(\vec{c} \in \mathbb{R}^n \). Then, by Theorem 1.6, \(\vec{x} = \vec{c} \) is a solution to \(A\vec{x} = \vec{b} \).

Suppose \(A \) is not row equivalent to \(\mathcal{I} \). Row reduce \(A \) to a reduced row echelon form \(H \) (so \(H \neq \mathcal{I} \)). So the last row (i.e., the \(n \)th row) of \(H \) must be all zeros. Now the row reduction of \(A \) to \(H \) can be accomplished by multiplication on the left by a sequence of elementary matrices by repeated application of Theorem 1.8, “Use of Elementary Matrices.” Say \(E_t \cdots E_2 E_1 A = H \). Now elementary matrices are invertible (see Example 1.5.A). Let \(\vec{e}_n \) be the \(n \)th basis element of \(\mathbb{R}^n \) written as a column vector. Define \(\vec{b} = (E_t \cdots E_2 E_1)^{-1}\vec{e}_n \).
Lemma 1.1

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \(\vec{b} \).
Let \(A \) be an \(n \times n \) matrix. The linear system \(A\vec{x} = \vec{b} \) has a solution for every choice of column vector \(\vec{b} \in \mathbb{R}^n \) if and only if \(A \) is row equivalent to the \(n \times n \) identity matrix \(I \).

Proof. Suppose \(A \) is row equivalent to \(I \). Let \(\vec{b} \) by any column vector in \(\mathbb{R}^n \). Then \([A \mid \vec{b}] \sim [I \mid \vec{c}]\) for some column vector \(\vec{c} \in \mathbb{R}^n \). Then, by Theorem 1.6, \(\vec{x} = \vec{c} \) is a solution to \(A\vec{x} = \vec{b} \).

Suppose \(A \) is not row equivalent to \(I \). Row reduce \(A \) to a reduced row echelon form \(H \) (so \(H \neq I \)). So the last row (i.e., the \(n \)th row) of \(H \) must be all zeros. Now the row reduction of \(A \) to \(H \) can be accomplished by multiplication on the left by a sequence of elementary matrices by repeated application of Theorem 1.8, “Use of Elementary Matrices.” Say \(E_t \cdots E_2 E_1 A = H \). Now elementary matrices are invertible (see Example 1.5.A). Let \(\vec{e}_n \) be the \(n \)th basis element of \(\mathbb{R}^n \) written as a column vector. Define \(\vec{b} = (E_t \cdots E_2 E_1)^{-1}\vec{e}_n \).
Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b}.

Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix I.

Proof (continued). Consider the system of equations $A\vec{x} = \vec{b}$ with associated augmented matrix $[A \mid \vec{b}]$. Applying the sequence of elementary row operations associated with $E_t \cdots E_2E_1$ reduces $[A \mid \vec{b}]$ to

$$[E_t \cdots E_2E_1 A \mid E_t \cdots E_2E_1 \vec{b}] = [E_t \cdots E_2E_1 A \mid (E_t \cdots E_2E_1)(E_t \cdots E_2E_1)^{-1} \vec{e}_n]$$

$$= [H \mid \vec{e}_n].$$

But then the last row of H consists of all zeros to the left of the partition and 1 to the right of the partition. So by Theorem 1.7(1), “Solutions of $A\vec{x} = \vec{b}$,” $A\vec{x} = \vec{b}$ has no solution. So if A is not row equivalent to I then the system $A\vec{x} = \vec{b}$ does not have a solution for all $\vec{b} \in \mathbb{R}^n$. \square
Lemma 1.1 (continued)

Lemma 1.1. Condition for $A\vec{x} = \vec{b}$ to be Solvable for \vec{b}.
Let A be an $n \times n$ matrix. The linear system $A\vec{x} = \vec{b}$ has a solution for every choice of column vector $\vec{b} \in \mathbb{R}^n$ if and only if A is row equivalent to the $n \times n$ identity matrix \mathcal{I}.

Proof (continued). Consider the system of equations $A\vec{x} = \vec{b}$ with associated augmented matrix $[A \mid \vec{b}]$. Applying the sequence of elementary row operations associated with $E_t \cdot \cdot \cdot E_2 E_1$ reduces $[A \mid \vec{b}]$ to

$$[E_t \cdot \cdot \cdot E_2 E_1 A \mid E_t \cdot \cdot \cdot E_2 E_1 \vec{b}] = [E_t \cdot \cdot \cdot E_2 E_1 A \mid (E_t \cdot \cdot \cdot E_2 E_1)(E_t \cdot \cdot \cdot E_2 E_1)^{-1} \vec{e}_n]$$

$$= [H \mid \vec{e}_n].$$

But then the last row of H consists of all zeros to the left of the partition and 1 to the right of the partition. So by Theorem 1.7(1), “Solutions of $A\vec{x} = \vec{b}$,” $A\vec{x} = \vec{b}$ has no solution. So if A is not row equivalent to \mathcal{I} then the system $A\vec{x} = \vec{b}$ does not have a solution for all $\vec{b} \in \mathbb{R}^n$. □
Determine whether the span of the column vectors of
\[
A = \begin{bmatrix}
1 & -2 & 1 & 0 \\
-3 & 5 & 0 & 2 \\
0 & 1 & 2 & -4 \\
-1 & 2 & 4 & -2
\end{bmatrix}
\]
span \(\mathbb{R}^4 \).

Solution. Recall that for any \(\vec{x} \in \mathbb{R}^n \), \(A\vec{x} \) is a linear combination of the columns of \(A \) by Note 1.3.A. So to see if the column vectors of \(A \) span \(\mathbb{R}^4 \), we need to choose an arbitrary \(\vec{b} \in \mathbb{R}^4 \) and see if there is \(\vec{x} \in \mathbb{R}^4 \) such that \(A\vec{x} = \vec{b} \). That is, we need to see if \(A\vec{x} = \vec{b} \) has a solution for every \(\vec{b} \in \mathbb{R}^4 \).
Determine whether the span of the column vectors of \(A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -3 & 5 & 0 & 2 \\ 0 & 1 & 2 & -4 \\ -1 & 2 & 4 & -2 \end{bmatrix} \) span \(\mathbb{R}^4 \).

Solution. Recall that for any \(\vec{x} \in \mathbb{R}^n \), \(A\vec{x} \) is a linear combination of the columns of \(A \) by Note 1.3.A. So to see if the column vectors of \(A \) span \(\mathbb{R}^4 \), we need to choose an arbitrary \(\vec{b} \in \mathbb{R}^4 \) and see if there is \(\vec{x} \in \mathbb{R}^4 \) such that \(A\vec{x} = \vec{b} \). That is, we need to see if \(A\vec{x} = \vec{b} \) has a solution for every \(\vec{b} \in \mathbb{R}^4 \).

So by Lemma 1.1 we only need to see if \(A \) is row equivalent to \(I \). Consider

\[
A = \begin{bmatrix} 1 & -2 & 1 & 0 \\ -3 & 5 & 0 & 2 \\ 0 & 1 & 2 & -4 \\ -1 & 2 & 4 & -2 \end{bmatrix}
\]

\[
\begin{array}{c}
R_2 \rightarrow R_2 + 3R_1 \\
R_4 \rightarrow R_4 + R_1
\end{array}
\]

\[
\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & -1 & 3 & 2 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 5 & -2 \end{bmatrix}
\]
Page 84 Number 12

Page 84 Number 12. Determine whether the span of the column vectors of
\[
A = \begin{bmatrix}
1 & -2 & 1 & 0 \\
-3 & 5 & 0 & 2 \\
0 & 1 & 2 & -4 \\
-1 & 2 & 4 & -2 \\
\end{bmatrix}
\]
span \(\mathbb{R}^4 \).

Solution. Recall that for any \(\vec{x} \in \mathbb{R}^n \), \(A\vec{x} \) is a linear combination of the columns of \(A \) by Note 1.3.A. So to see if the column vectors of \(A \) span \(\mathbb{R}^4 \), we need to choose an arbitrary \(\vec{b} \in \mathbb{R}^4 \) and see if there is \(\vec{x} \in \mathbb{R}^4 \) such that \(A\vec{x} = \vec{b} \). That is, we need to see if \(A\vec{x} = \vec{b} \) has a solution for every \(\vec{b} \in \mathbb{R}^4 \). So by Lemma 1.1 we only need to see if \(A \) is row equivalent to \(I \). Consider

\[
A = \begin{bmatrix}
1 & -2 & 1 & 0 \\
-3 & 5 & 0 & 2 \\
0 & 1 & 2 & -4 \\
-1 & 2 & 4 & -2 \\
\end{bmatrix}
\]

\[
\begin{array}{c}
R_2 \rightarrow R_2 + 3R_1 \\
R_4 \rightarrow R_4 + R_1 \\
\end{array}
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 \\
0 & 0 & 5 & -2 \\
\end{bmatrix}
\]
Solution (continued).

\[
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 \\
0 & 0 & 5 & -2
\end{bmatrix}
\]

\[
\begin{array}{c}
R_1 \rightarrow R_1 - 2R_2 \\
R_3 \rightarrow R_3 + R_2
\end{array}
\]

\[
\begin{bmatrix}
1 & 0 & -5 & -4 \\
0 & -1 & 3 & 2 \\
0 & 0 & 5 & -2
\end{bmatrix}
\]

Now \(H \) is in reduced row echelon form and \(H \neq I \). So Lemma 1.1 implies that NO, the columns do not span \(\mathbb{R}^4 \).

\[\square\]
Solution (continued).

Now H is in reduced row echelon form and $H \neq I$. So Lemma 1.1 implies that NO, the columns do not span \mathbb{R}^4. □
Solution (continued).

\[
\begin{bmatrix}
1 & -2 & 1 & 0 \\
0 & -1 & 3 & 2 \\
0 & 1 & 2 & -4 \\
0 & 0 & 5 & -2
\end{bmatrix}
\]

\[
\begin{array}{c}
R_1 \rightarrow R_1 - 2R_2 \\
R_3 \rightarrow R_3 + R_2
\end{array}
\]

\[
\begin{bmatrix}
1 & 0 & -5 & -4 \\
0 & -1 & 3 & 2 \\
0 & 0 & 5 & -2
\end{bmatrix}
\]

\[
\begin{array}{c}
R_1 \rightarrow R_1 + R_3 \\
R_2 \rightarrow R_2 - (3/5)R_3 \\
R_4 \rightarrow R_4 - R_3
\end{array}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & -6 \\
0 & -1 & 0 & 16/5 \\
0 & 0 & 5 & -2 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{array}{c}
R_2 \rightarrow R_2 \\
R_3 \rightarrow R_3/5
\end{array}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & -6 \\
0 & 1 & 0 & -16/5 \\
0 & 0 & 1 & -2/5 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[= H.\]

Now \(H\) is in reduced row echelon form and \(H \neq I\). So Lemma 1.1 implies that \[\text{NO, the columns do not span } \mathbb{R}^4. \]
Theorem 1.11. A Commutivity Property.

Let A and C be $n \times n$ matrices. Then $CA = I$ if and only if $AC = I$.

Proof. Suppose that $AC = I$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = I\vec{b} = \vec{b}.$$
Theorem 1.11. A Commutivity Property.
Let A and C be $n \times n$ matrices. Then $CA = I$ if and only if $AC = I$.

Proof. Suppose that $AC = I$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = I\vec{b} = \vec{b}.$$

By Lemma 1.1, we know that A is row equivalent to the $n \times n$ identity matrix I, and so there exists a sequence of elementary matrices E_1, E_2, \ldots, E_t such that $(E_t \cdots E_2 E_1)A = I$. By Theorem 1.9, the two equations

$$(E_t \cdots E_2 E_1)A = I \text{ and } AC = I$$

imply that $E_t \cdots E_2 E_1 = C$, and so we have $CA = I$.
Theorem 1.11. A Commutivity Property.
Let A and C be $n \times n$ matrices. Then $CA = I$ if and only if $AC = I$.

Proof. Suppose that $AC = I$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = I\vec{b} = \vec{b}.$$

By Lemma 1.1, we know that A is row equivalent to the $n \times n$ identity matrix I, and so there exists a sequence of elementary matrices E_1, E_2, \ldots, E_t such that $(E_t \cdots E_2 E_1)A = I$. By Theorem 1.9, the two equations

$$(E_t \cdots E_2 E_1)A = I \quad \text{and} \quad AC = I$$

imply that $E_t \cdots E_2 E_1 = C$, and so we have $CA = I$. The other half of the proof follows by interchanging the roles of A and C. □
Theorem 1.11. A Commutivity Property.

Let A and C be $n \times n$ matrices. Then $CA = I$ if and only if $AC = I$.

Proof. Suppose that $AC = I$. Then the equation $A\vec{x} = \vec{b}$ has a solution for every column vector $\vec{b} \in \mathbb{R}^n$. Notice that $\vec{x} = C\vec{b}$ is a solution because

$$A(C\vec{b}) = (AC)\vec{b} = I\vec{b} = \vec{b}.$$

By Lemma 1.1, we know that A is row equivalent to the $n \times n$ identity matrix I, and so there exists a sequence of elementary matrices E_1, E_2, \ldots, E_t such that $(E_t \cdots E_2 E_1)A = I$. By Theorem 1.9, the two equations

$$(E_t \cdots E_2 E_1)A = I \text{ and } AC = I$$

imply that $E_t \cdots E_2 E_1 = C$, and so we have $CA = I$. The other half of the proof follows by interchanging the roles of A and C. \square
Consider $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. Find A^{-1}. Use A^{-1} to solve the system

\[
\begin{align*}
6x_1 + 7x_2 &= 4 \\
8x_1 + 9x_2 &= 6.
\end{align*}
\]

Solution. We form $[A|I]$ and apply Gauss-Jordan elimination to produce the row equivalent $[I|A^{-1}]$ (if possible).
Page 84 Number 4. Consider $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. Find A^{-1}. Use A^{-1} to solve the system

\begin{align*}
6x_1 + 7x_2 &= 4 \\
8x_1 + 9x_2 &= 6.
\end{align*}

Solution. We form $[A|I]$ and apply Gauss-Jordan elimination to produce the row equivalent $[I|A^{-1}]$ (if possible). So

\[
\begin{bmatrix}
6 & 7 & 1 & 0 \\
8 & 9 & 0 & 1
\end{bmatrix} \xrightarrow{R_1 \rightarrow R_1/6} \begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
8 & 9 & 0 & 1
\end{bmatrix}
\]
Page 84 Number 4

Page 84 Number 4. Consider \(A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix} \). Find \(A^{-1} \). Use \(A^{-1} \) to solve the system

\[
\begin{align*}
6x_1 + 7x_2 &= 4 \\
8x_1 + 9x_2 &= 6
\end{align*}
\]

Solution. We form \([A|I]\) and apply Gauss-Jordan elimination to produce the row equivalent \([I|A^{-1}]\) (if possible). So

\[
\begin{bmatrix}
6 & 7 & | & 1 & 0 \\
8 & 9 & | & 0 & 1
\end{bmatrix}
\xrightarrow{R_1 \rightarrow \frac{1}{6} R_1}
\begin{bmatrix}
1 & \frac{7}{6} & | & \frac{1}{6} & 0 \\
8 & 9 & | & 0 & 1
\end{bmatrix}
\xrightarrow{R_2 \rightarrow R_2 - 8R_1}
\begin{bmatrix}
1 & \frac{7}{6} & | & \frac{1}{6} & 0 \\
0 & -\frac{2}{3} & | & 0 & \frac{1}{3}
\end{bmatrix}
\xrightarrow{-3R_2}
\begin{bmatrix}
1 & \frac{7}{6} & | & \frac{1}{6} & 0 \\
0 & 1 & | & 0 & 1
\end{bmatrix}
\]

Linear Algebra

May 15, 2020 9 / 13
Page 84 Number 4. Consider $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. Find A^{-1}. Use A^{-1} to solve the system

\[
\begin{align*}
6x_1 + 7x_2 &= 4 \\
8x_1 + 9x_2 &= 6.
\end{align*}
\]

Solution. We form $[A|I]$ and apply Gauss-Jordan elimination to produce the row equivalent $[I|A^{-1}]$ (if possible). So

\[
\begin{bmatrix}
6 & 7 & 1 & 0 \\
8 & 9 & 0 & 1
\end{bmatrix} \xrightarrow{R_1 \rightarrow R_1/6} \begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
8 & 9 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
8 - 8(1) & 9 - 8(7/6) & 0 - 8(1/6) & 1 - 8(0)
\end{bmatrix} \xrightarrow{R_2 \rightarrow R_2 - 8R_1} \begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
0 & -1/3 & -4/3 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
0 & 1 & 4 & -3
\end{bmatrix} \xrightarrow{R_2 \rightarrow -3R_2}
\]
Consider $A = \begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$. Find A^{-1}. Use A^{-1} to solve the system

\begin{align*}
6x_1 + 7x_2 &= 4 \\
8x_1 + 9x_2 &= 6.
\end{align*}

Solution. We form $[A|I]$ and apply Gauss-Jordan elimination to produce the row equivalent $[I|A^{-1}]$ (if possible). So

\[
\begin{bmatrix}
6 & 7 & 1 & 0 \\
8 & 9 & 0 & 1
\end{bmatrix}
\overset{R_1 \rightarrow R_1/6}{\sim}
\begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
8 & 9 & 0 & 1
\end{bmatrix}
\]

\[
R_2 \rightarrow R_2 - 8R_1
\begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
8 - 8(1) & 9 - 8(7/6) & 0 - 8(1/6) & 1 - 8(0)
\end{bmatrix}
\]

\[= \begin{bmatrix} 1 & 7/6 & 1/6 & 0 \\ 0 & -1/3 & -4/3 & 1 \end{bmatrix} \overset{R_2 \rightarrow -3R_2}{\sim} \begin{bmatrix} 0 & 1 & 4 & -3 \end{bmatrix}
\]
Solution (continued).

\[
\begin{bmatrix}
1 & 7/6 & 1/6 & 0 \\
0 & 1 & 4 & -3 \\
\end{bmatrix}
\xrightarrow{R_1 \rightarrow R_1 - (7/6)R_2}
\begin{bmatrix}
1 - (7/6)(0) & 7/6 - (7/6)(1) & 1/6 - (7/6)(4) & 0 - (7/6)(-3) \\
0 & 1 & 4 & -3 \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 0 & -9/2 & 7/2 \\
0 & 1 & 4 & -3 \\
\end{bmatrix}.
\]

So
\[
A^{-1} = \begin{bmatrix}
-9/2 & 7/2 \\
4 & -3 \\
\end{bmatrix}.
\]
Solution (continued).

\[
\begin{bmatrix}
1 & \frac{7}{6} & \frac{1}{6} & 0 \\
0 & 1 & 4 & -3
\end{bmatrix}
\overset{R_1 \rightarrow R_1 - \left(\frac{7}{6}\right) R_2}{\longrightarrow}
\begin{bmatrix}
1 - \left(\frac{7}{6}\right)(0) & \frac{7}{6} - \left(\frac{7}{6}\right)(1) & \frac{1}{6} - \left(\frac{7}{6}\right)(4) & 0 - \left(\frac{7}{6}\right)(-3) \\
0 & 1 & 4 & -3
\end{bmatrix}
\]

\[
= \begin{bmatrix}
1 & 0 & -\frac{9}{2} & \frac{7}{2} \\
0 & 1 & 4 & -3
\end{bmatrix}.
\]

So \(A^{-1} = \begin{bmatrix} -\frac{9}{2} & \frac{7}{2} \\ 4 & -3 \end{bmatrix}. \)
Solution (continued). For the system of equations, we express it as a matrix product $A\vec{x} = \vec{b}$:

$$
\begin{bmatrix}
6 & 7 \\
8 & 9
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
4 \\
6
\end{bmatrix}.
$$

Then $A^{-1}A\vec{x} = A^{-1}\vec{b}$ or $I\vec{x} = A^{-1}\vec{b}$ or $\vec{x} = A^{-1}\vec{b}$. So

$$
\vec{x} =
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = A^{-1}\vec{b} =
\begin{bmatrix}
-9/2 & 7/2 \\
4 & -3
\end{bmatrix}
\begin{bmatrix}
4 \\
6
\end{bmatrix}
$$

$$
=
\begin{bmatrix}
(-9/2)(4) + (7/2)(6) \\
4(4) - 3(6)
\end{bmatrix} =
\begin{bmatrix}
3 \\
-2
\end{bmatrix}
$$

and the solution is $x_1 = 3$, $x_2 = -2$. □
Solution (continued). For the system of equations, we express it as a matrix product $A\vec{x} = \vec{b}$:

$$
\begin{bmatrix}
6 & 7 \\
8 & 9 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
=
\begin{bmatrix}
4 \\
6 \\
\end{bmatrix}.
$$

Then $A^{-1}A\vec{x} = A^{-1}\vec{b}$ or $I\vec{x} = A^{-1}\vec{b}$ or $\vec{x} = A^{-1}\vec{b}$. So

$$
\vec{x} =
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} = A^{-1}\vec{b} =
\begin{bmatrix}
-9/2 & 7/2 \\
4 & -3 \\
\end{bmatrix}
\begin{bmatrix}
4 \\
6 \\
\end{bmatrix}
$$

$$
=
\begin{bmatrix}
(-9/2)(4) + (7/2)(6) \\
4(4) - 3(6) \\
\end{bmatrix}
=
\begin{bmatrix}
3 \\
-2 \\
\end{bmatrix}
$$

and the solution is $x_1 = 3, x_2 = -2$. □
Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^T is invertible. Describe $(A^T)^{-1}$ in terms of A^{-1}.

Solution. We know that $(AB)^T = B^T A^T$ (see “Properties of the Transpose Operator” in Section 1.3; page 4 of the notes).
Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^T is invertible. Describe $(A^T)^{-1}$ in terms of A^{-1}.

Solution. We know that $(AB)^T = B^T A^T$ (see “Properties of the Transpose Operator” in Section 1.3; page 4 of the notes). Since A is invertible then $AA^{-1} = A^{-1} A = \mathcal{I}$. So $(AA^{-1})^T = (A^{-1} A)^T = \mathcal{I}^T = \mathcal{I}$ (since the identity matrix \mathcal{I} is symmetric; see Definition 1.11).
Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^T is invertible. Describe $(A^T)^{-1}$ in terms of A^{-1}.

Solution. We know that $(AB)^T = B^T A^T$ (see “Properties of the Transpose Operator” in Section 1.3; page 4 of the notes). Since A is invertible then $AA^{-1} = A^{-1} A = I$. So $(AA^{-1})^T = (A^{-1} A)^T = I^T = I$ (since the identity matrix I is symmetric; see Definition 1.11). Hence $(A^{-1})^T A^T = A^T (A^{-1})^T = I$ and so the inverse of A^T is $(A^{-1})^T$. Therefore A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$. □
Page 85 number 24. Prove that if A is an invertible $n \times n$ matrix then A^T is invertible. Describe $(A^T)^{-1}$ in terms of A^{-1}.

Solution. We know that $(AB)^T = B^T A^T$ (see “Properties of the Transpose Operator” in Section 1.3; page 4 of the notes). Since A is invertible then $AA^{-1} = A^{-1} A = I$. So $(AA^{-1})^T = (A^{-1} A)^T = I^T = I$ (since the identity matrix I is symmetric; see Definition 1.11). Hence $(A^{-1})^T A^T = A^T (A^{-1})^T = I$ and so the inverse of A^T is $(A^{-1})^T$. Therefore A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$. □
A square matrix A is said to be idempotent if $A^2 = A$.

(a) Give an example of an idempotent matrix other than 0 and I.

Solution. An easy example can be found by slightly modifying I.

Consider, say, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then

$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$$
A square matrix A is said to be *idempotent* if $A^2 = A$.

Solution. An easy example can be found by slightly modifying I.

Consider, say, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then

$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$$

Proof. Suppose $A^2 = A$ and A^{-1} exists. Then $A^{-1}(A^2) = A^{-1}A$ and by associativity (Theorem 1.3.A(8)), $(A^{-1}A)A = A^{-1}A$ or $I_A = I$ or $A = I$.

(b) Prove that if matrix A is both idempotent and invertible, then $A = I$.

A square matrix A is said to be *idempotent* if $A^2 = A$.

(a) Give an example of an idempotent matrix other than 0 and I.

Solution. An easy example can be found by slightly modifying I.

Consider, say, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then

$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.$$

(b) Prove that if matrix A is both idempotent and invertible, then $A = I$.

Proof. Suppose $A^2 = A$ and A^{-1} exists. Then $A^{-1}(A^2) = A^{-1}A$ and by associativity (Theorem 1.3.A(8)), "Properties of Matrix Algebra") $(A^{-1}A)A = A^{-1}A$ or $IA = I$ or $A = I$.

\[\square \]
A square matrix \(A \) is said to be idempotent if \(A^2 = A \).

(a) Give an example of an idempotent matrix other than 0 and \(I \).

Solution. An easy example can be found by slightly modifying \(I \).

Consider, say, \(A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \). Then

\[
A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A.
\]

(b) Prove that if matrix \(A \) is both idempotent and invertible, then \(A = I \).

Proof. Suppose \(A^2 = A \) and \(A^{-1} \) exists. Then \(A^{-1}(A^2) = A^{-1}A \) and by associativity (Theorem 1.3.A(8)), “Properties of Matrix Algebra”) \((A^{-1}A)A = A^{-1}A \) or \(IA = I \) or \(A = I \).