Chapter 10: Solving Large Systems
Section 10.2 The LU-Factorization—Proofs of Theorems

Theorem 10.1. Unique Factorization.
Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,
2. U is upper triangular with all main diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof. Suppose that $A = L_1 D_1 U_1 = L_2 D_2 U_2$ are two such factorizations. Then L_1^{-1} and L_2^{-1} are also lower triangular, D_1^{-1} and D_2^{-1} are both diagonal and U_1^{-1} and U_2^{-1} are both upper triangular. Since the diagonal entries of L_1, L_2, U_1, U_2 are all 1 then the diagonal entries of L_1^{-1}, L_2^{-1}, U_1^{-1}, U_2^{-1} are also all 1.
Theorem 10.1. Unique Factorization.

Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,
2. U is upper triangular with all main diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). We have $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$. A product of upper/lower triangular matrices is upper/lower triangular, so $L_2^{-1}L_1$ is lower triangular and $D_2U_2U_1^{-1}D_1^{-1}$ is upper triangular. Since $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$, then both sides of this equation must be the identity. So $L_2^{-1}L_1 = I$ and $L_1 = L_2$. Similarly, we can conclude $U_1U_2^{-1} = D_1^{-1}L_1^{-1}L_2D_2$ and both sides must be the identity. So $U_1U_2^{-1} = D_2$. We then have $L_1D_1U_1 = L_1D_2U_1$ and since all matrices are invertible, we conclude $D_1 = D_2$. We therefore have $L_1 = L_2$, $U_1 = U_2$, and $D_1 = D_2$. So the factorization of A is unique. \qed