Chapter 10: Solving Large Systems
Section 10.2 The LU-Factorization—Proofs of Theorems
1 Theorem 10.A

2 Theorem 10.1. Unique Factorization
Theorem 10.A

Theorem 10.A. If A is an $n \times n$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular matrix L and an upper triangular matrix U such that $A = LU$.

Proof. As described in the previous note, there is a sequence of $n \times n$ elementary matrices E_i such that $E_hE_{h-1}\cdots E_2E_1A = U$ where each E_i is an elementary matrix associated with the elementary row operation of row addition. Since U is upper triangular then the row operations need only involve adding a multiple of one row to a lower row ($R_p \rightarrow R_p + sR_q$ where $p > q$).
Theorem 10.A

Theorem 10.A. If A is an $n \times n$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular matrix L and an upper triangular matrix U such that $A = LU$.

Proof. As described in the previous note, there is a sequence of $n \times n$ elementary matrices E_i such that $E_hE_{h-1} \cdots E_2E_1A = U$ where each E_i is an elementary matrix associated with the elementary row operation of row addition. Since U is upper triangular then the row operations need only involve adding a multiple of one row to a lower row ($R_p \rightarrow R_p + sR_q$ where $p > q$). The elementary matrix associated with $R_p \rightarrow R_p + sR_q$ has all entries the same as the $n \times n$ identity except that the (p, q) entry is s. The inverse of this elementary matrix has all entries the same as the $n \times n$ identity except that the (p, q) entry is $-s$. That is, each E_i^{-1} is lower triangular for $i = 1, 2, \ldots, h$.
Theorem 10.A. If A is an $n \times n$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular matrix L and an upper triangular matrix U such that $A = LU$.

Proof. As described in the previous note, there is a sequence of $n \times n$ elementary matrices E_i such that $E_h E_{h-1} \cdots E_2 E_1 A = U$ where each E_i is an elementary matrix associated with the elementary row operation of row addition. Since U is upper triangular then the row operations need only involve adding a multiple of one row to a lower row ($R_p \rightarrow R_p + sR_q$ where $p > q$). The elementary matrix associated with $R_p \rightarrow R_p + sR_q$ has all entries the same as the $n \times n$ identity except that the (p, q) entry is s. The inverse of this elementary matrix has all entries the same as the $n \times n$ identity except that the (p, q) entry is $-s$. That is, each E_i^{-1} is lower triangular for $i = 1, 2, \ldots, h$.
Theorem 10.A (continued)

Theorem 10.A. If A is an $n \times n$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular matrix L and an upper triangular matrix U such that $A = LU$.

Proof (continued). Since $E_hE_{h-1} \cdots E_2E_1A = U$, then $A = E_1^{-1}E_2^{-1} \cdots E_{h-1}^{-1}E_h^{-1}U$. The product of square lower triangular matrices is lower triangular (this follows from the definition of matrix product; see Theorem 3.2.1(4) of my online notes for Theory of Matrices [MATH 5090] on Section 3.2. Multiplication of Matrices and Multiplication of Vectors and Matrices), so set $L = E_1^{-1}E_2^{-1} \cdots E_{h-1}^{-1}E_h^{-1}$. Then L is lower triangular and $A = LU$, as claimed. □
Theorem 10.1. Unique Factorization.
Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,
2. U is upper triangular with all main diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof. Suppose that $A = L_1 D_1 U_1 = L_2 D_2 U_2$ are two such factorizations. Then L_1^{-1} and L_2^{-1} are also lower triangular, D_1^{-1} and D_2^{-1} are both diagonal and U_1^{-1} and U_2^{-1} are both upper triangular. Since the diagonal entries of L_1, L_2, U_1, U_2 are all 1 then the diagonal entries of $L_1^{-1}, L_2^{-1}, U_1^{-1}, U_2^{-1}$ are also all 1.
Theorem 10.1. Unique Factorization.
Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,
2. U is upper triangular with all main diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof. Suppose that $A = L_1 D_1 U_1 = L_2 D_2 U_2$ are two such factorizations. Then L_1^{-1} and L_2^{-1} are also lower triangular, D_1^{-1} and D_2^{-1} are both diagonal and U_1^{-1} and U_2^{-1} are both upper triangular. Since the diagonal entries of L_1, L_2, U_1, U_2 are all 1 then the diagonal entries of $L_1^{-1}, L_2^{-1}, U_1^{-1}, U_2^{-1}$ are also all 1.
Theorem 10.1 (continued)

Theorem 10.1. Unique Factorization.
Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,
2. U is upper triangular with all main diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). We have $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$. A product of upper/lower triangular matrices is upper/lower triangular, so $L_2^{-1}L_1$ is lower triangular and $D_2U_2U_1^{-1}D_1^{-1}$ is upper triangular. Since $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$ then both sides of this equation must be the identity. So $L_2^{-1}L_1 = I$ and $L_1 = L_2$.
Theorem 10.1 (continued)

Theorem 10.1. Unique Factorization.
Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,
2. U is upper triangular with all main diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). We have $L_2^{-1}L_1 = D_2 U_2 U_1^{-1} D_1^{-1}$. A product of upper/lower triangular matrices is upper/lower triangular, so $L_2^{-1}L_1$ is lower triangular and $D_2 U_2 U_1^{-1} D_1^{-1}$ is upper triangular. Since $L_2^{-1}L_1 = D_2 U_2 U_1^{-1} D_1^{-1}$ then both sides of this equation must be the identity. So $L_2^{-1}L_1 = \mathcal{I}$ and $L_1 = L_2$. Similarly, we can conclude $U_1 U_2^{-1} = D_1^{-1} L_1^{-1} L_2 D_2$ and both sides must be the identity. So $U + 1 = U_2$. We then have $L_1 D_1 U_1 = L_1 D_2 U_1$ and since all matrices are invertible, we conclude $D_1 = D_2$. We therefore have $L_1 = L_2$, $U_1 = U_2$, and $D_1 = D_2$. So the factorization of A is unique. \qed
Theorem 10.1 (continued)

Theorem 10.1. Unique Factorization.

Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,
2. U is upper triangular with all main diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). We have $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$. A product of upper/lower triangular matrices is upper/lower triangular, so $L_2^{-1}L_1$ is lower triangular and $D_2U_2U_1^{-1}D_1^{-1}$ is upper triangular. Since $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$ then both sides of this equation must be the identity. So $L_2^{-1}L_1 = \mathcal{I}$ and $L_1 = L_2$. Similarly, we can conclude $U_1U_2^{-1} = D_1^{-1}L_1^{-1}L_2D_2$ and both sides must be the identity. So $U_1U_2^{-1} = U_2$. We then have $L_1D_1U_1 = L_1D_2U_1$ and since all matrices are invertible, we conclude $D_1 = D_2$. We therefore have $L_1 = L_2$, $U_1 = U_2$, and $D_1 = D_2$. So the factorization of A is unique.