Theorem 2.1

Theorem 2.1. Alternative Characterization of Basis

Let W be a subspace of \mathbb{R}^n. A subset $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ of W is a basis for W if and only if

1. $W = \text{span}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k)$ and
2. the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent.

Proof. Recall that we defined $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ as a basis for W if every vector in W can be expressed as a unique linear combination of $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ (see Definition 1.17).

Let $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ be a basis for W. Then every vector in W is a (unique) linear combination of $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ and so these vectors span W and (1) holds. To show linear independence, we consider the equation $r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = 0$. We know that $r_1 = r_2 = \cdots = r_k = 0$ is one possible choice for the r_i; but since $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ is a basis for W then this is the only choice for the r_i since 0 is a unique linear combination of the \vec{w}_i.

Proof (continued). That is, $r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = 0$ implies $r_1 = r_2 = \cdots = r_k = 0$. So, by Definition 2.1, “Linear Dependence and Independence,” the \vec{w}_i are not linearly dependent. That is, $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ are linearly independent and (2) holds.

Now suppose (1) and (2) hold. Then every vector in W can be expressed as some linear combination of the \vec{w}_i since the \vec{w}_i span W by (1). To show uniqueness of the linear combinations, suppose $\vec{v} \in W$ and $\vec{v} = r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k = s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k$. Then

\[(r_1\vec{w}_1 + r_2\vec{w}_2 + \cdots + r_k\vec{w}_k) - (s_1\vec{w}_1 + s_2\vec{w}_2 + \cdots + s_k\vec{w}_k) = 0 \quad \text{and} \quad (r_1 - s_1)\vec{w}_1 + (r_2 - s_2)\vec{w}_2 + \cdots + (r_k - s_k)\vec{w}_k = 0.
\]

Since the \vec{w}_i are linearly independent by (2), then $r_1 - s_1 = r_2 - s_2 = \cdots = r_k - s_k = 0$ by Note 2.1.A and so $r_1 = s_1, r_2 = s_2, \ldots, r_k = s_k$. That is, there is a unique linear combination of the \vec{w}_i which equals \vec{v}. Since \vec{v} is an arbitrary vector in W, then $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ is a basis for W. \square
Page 134 Number 10

Page 134 Number 10. Use Theorem 2.1.A, “Finding a Basis for \(W = \text{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k) \),” to find a basis for \(W = \text{sp}([-2, 3, 1], [3, -1, 2], [1, 2, 3], [-1, 5, 4]) \) in \(\mathbb{R}^3 \).

Solution. We create matrix \(A \) with the vectors in the spanning set as columns: \(A = \begin{bmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{bmatrix} \). Now we row reduce \(A \):

\[
A = \begin{bmatrix} -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ -2 & 3 & 1 & -1 \\ 3 & -1 & 2 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -7 & -7 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} = H.
\]

Since \(H \) is in row echelon form and has a pivot in each of the first two columns then, by Theorem 2.1.A, a set consisting of the first two vectors, \(\vec{w}_1, \vec{w}_2 \) is a basis for \(W \); that is, \([[-2, 3, 1], [3, -1, 2]]\) is a basis for \(W \).

Notice that the third vector is a linear combination of these two, \([1[-2, 3, 1] + 1[3, -1, 2]] = [1, 2, 3] \), and the fourth vector is a linear combination of these two, \([2[-2, 3, 1] + 1[3, -1, 2]] = [-1, 5, 4] \). \(\square \)

Page 135 Number 22

Page 135 Number 22. Determine whether the set \([[1, -3, 2], [2, -5, 3], [4, 0, 1]]\) is linearly dependent or independent.

Solution. We use Theorem 2.1.A, “Finding a Basis for \(W = \text{sp}(\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k) \),” and test to see if the set of vectors is a basis for its span. Let \(W = \text{sp}([1, -3, 2], [2, -5, 3], [4, 0, 1]) \). By Theorem 2.1, a basis for a vector space \(W \) is a linearly independent spanning set. Of course the set of vectors spans its span(!), so it is a basis of its span if and only if the set is a linearly independent set of vectors. We create matrix \(A \) with the vectors in the set as its columns and row reduce:

\[
A = \begin{bmatrix} 1 & 2 & 4 \\ -3 & -5 & 0 \\ 2 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 0 & 0 \end{bmatrix}
\]

\(\ldots \)

\[
A \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & -1 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 12 \\ 0 & 0 & 5 \end{bmatrix} = H.
\]

Since \(H \) is in row echelon form and has a pivot in each column then by Theorem 2.1.A the set of all three vectors in \([1, -3, 2], [2, -5, 3], [4, 0, 1]\) form a basis for \(W \). Therefore the set of vectors is linearly independent. \(\square \)
Theorem 2.2. Relative Sizes of Spanning and Independent Sets.

Let W be a subspace of \mathbb{R}^n. Let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ be vectors in W that span W and let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be vectors in W that are independent. Then $k \geq m$.

Proof. We give a proof by contradiction. ASSUME $k < m$. Since the vectors $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k$ span W and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are in W then there are scalars a_{ij} such that:

\[
\begin{align*}
\vec{v}_1 &= a_{11}\vec{w}_1 + a_{21}\vec{w}_2 + \cdots + a_{k1}\vec{w}_k \\
\vec{v}_2 &= a_{12}\vec{w}_1 + a_{22}\vec{w}_2 + \cdots + a_{k2}\vec{w}_k \\
&\vdots \\
\vec{v}_m &= a_{1m}\vec{w}_1 + a_{2m}\vec{w}_2 + \cdots + a_{km}\vec{w}_k
\end{align*}
\]

Now summing these equation we get:

\[
x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_m\vec{v}_m = (a_{11}x_1 + a_{12}x_2 + \cdots + a_{1m}x_m)\vec{w}_1 + (a_{21}x_1 + a_{22}x_2 + \cdots + a_{2m}x_m)\vec{w}_2 + \cdots + (a_{k1}x_1 + a_{k2}x_2 + \cdots + a_{km}x_m)\vec{w}_k.
\]

Consider the system of equations (which results by requiring each coefficient of the \vec{w}_i's to be 0): ...

Proof (continued). ...\]

Corollary 2.1.A. Invariance of Dimension.

Any two bases of a subspace of \mathbb{R}^n contains the same number of vectors.

Proof. Suppose that both B, a set of k vectors, and B', a set of m vectors, are bases for W. Then both B and B' are linearly independent spanning sets of W by Theorem 2.1, “Alternative Characterization of a Basis.” This means that B is a set of k vectors spanning W and B' is a set of m linearly independent vectors in W. So by Theorem 2.2, “Relative Sizes of Spanning and Independent Sets,” $k \geq m$. But also B' is a set of m vectors spanning W and B is a set of k linearly independent vectors in W. So by Theorem 2.2, $m \geq k$. Therefore $k = m$ and the bases B and B' have the same number of vectors. Since B and B' are arbitrary bases of W, the result follows. \[\square\]
Theorem 2.3. Existence and Determination of Bases.

(1) Every subspace \(W \neq \{0\} \) of \(\mathbb{R}^n \) has a basis and \(\dim(W) \leq n \).

Proof. Let \(W \) be a subspace of \(\mathbb{R}^n \) where \(W \neq \{0\} \). Then there is some \(\tilde{w}_1 \in W \) such that \(\tilde{w}_1 \neq 0 \). Set \(B_1 = \{\tilde{w}_1\} \). If \(W = \text{sp}(\tilde{w}_1) \) then stop, otherwise there is \(\tilde{w}_2 \in W \) such that \(\tilde{w}_2 \notin \text{sp}(\tilde{w}_1) \). Set \(B_2 = \{\tilde{w}_1, \tilde{w}_2\} \). Notice that \(\tilde{w}_1 \) and \(\tilde{w}_2 \) are linearly independent since \(\tilde{r}_1 \tilde{w}_1 + \tilde{r}_2 \tilde{w}_2 = 0 \) for \(\tilde{r}_1 \neq 0 \) implies \(\tilde{w}_1 = (-\tilde{r}_2/\tilde{r}_1) \tilde{w}_2 \), contradicting the choice of \(\tilde{w}_2 \notin \text{sp}(\tilde{w}_1) \) (and similarly if \(\tilde{r}_2 \neq 0 \)). If \(W = \text{sp}(\tilde{w}_1, \tilde{w}_2) \) then stop. Otherwise, continue inductively so that if \(W \neq \text{sp}(\tilde{w}_1, \tilde{w}_2, \ldots, \tilde{w}_i) \) where \(\tilde{w}_1, \tilde{w}_2, \ldots, \tilde{w}_i \) are linearly independent, then there is \(\tilde{w}_{i+1} \in W \) such that \(\tilde{w}_{i+1} \notin \text{sp}(\tilde{w}_1, \tilde{w}_2, \ldots, \tilde{w}_i) \). Set \(B_{i+1} = \{\tilde{w}_1, \tilde{w}_2, \ldots, \tilde{w}_i, \tilde{w}_{i+1}\} \). Then for

\[
 r_1 \tilde{w}_1 + r_2 \tilde{w}_2 + \cdots + r_i \tilde{w}_i + r_{i+1} \tilde{w}_{i+1} = 0,
\]

if \(r_{i+1} \neq 0 \) then \(\tilde{w}_{i+1} = (-r_i/r_{i+1}) \tilde{w}_i + (-r_2/r_{i+1}) \tilde{w}_2 + \cdots + (-r_1/r_{i+1}) \tilde{w}_1 \), contradicting the choice of \(\tilde{w}_{i+1} \notin \text{sp}(\tilde{w}_1, \tilde{w}_2, \ldots, \tilde{w}_i) \). So \(r_{i+1} = 0 \).

Page 136 Number 34

Let \(\tilde{v} \) and \(\tilde{w} \) be independent column vectors in \(\mathbb{R}^n \) and let \(A \) be an invertible \(n \times n \) matrix where \(n > 1 \). Prove that the vectors \(A\tilde{v} \) and \(A\tilde{w} \) are independent.

Solution. We use Definition 2.1, “Linear Dependence and Independence,” to test the set \(\{A\tilde{v}, A\tilde{w}\} \) for linear independence. Suppose \(r_1 A\tilde{v} + r_2 A\tilde{w} = 0 \) for some \(r_1, r_2 \in \mathbb{R} \). By Theorem 1.3.A, “Properties of Matrix Algebra,” we have

\[
 0 = r_1 A\tilde{v} + r_2 A\tilde{w} = A(r_1 \tilde{v} + r_2 \tilde{w}) \quad \text{by Theorem 1.3.A(7)}
\]

\[
 = A(r_1 \tilde{v} + r_2 \tilde{w}) \quad \text{by Theorem 1.3.A(10)}.
\]

Therefore \(0 = r_1 \tilde{v} + r_2 \tilde{w} \). Since \(\tilde{v} \) and \(\tilde{w} \) are independent then by Definition 2.1 we must have \(r_1 = r_2 = 0 \). That is, \(r_1 A\tilde{v} + r_2 A\tilde{w} = 0 \) implies \(r_1 = r_2 = 0 \). So, again by Definition 2.1, \(A\tilde{v} \) and \(A\tilde{w} \) are independent.
Page 136 Number 38. Prove that if W is a subspace of \mathbb{R}^n and $\dim(W) = n$ then $W = \mathbb{R}^n$.

Solution. Of course $\dim(\mathbb{R}^n) = n$ since the standard basis for \mathbb{R}^n (see Section 1.1) has n vectors. If W is a subspace of \mathbb{R}^n of dimension n then by Definition 2.2, “Dimension of a Subspace,” the number of elements in a basis B of W is n. By Theorem 2.1(2), “Alternative Characterization of a Basis,” B is a linearly independent set. So B is a linearly independent set of n vectors and by Theorem 2.3(2), “Existence and Determination of Bases,” B can be enlarged to become a basis for \mathbb{R}^n. However, a basis of \mathbb{R}^n contains n vectors and so no additional vectors can be added to B in the creation of such a basis. So B must already be a basis of \mathbb{R}^n and hence $W = \mathbb{R}^n$. \qed