Chapter 2. Dimension, Rank, and Linear Transformations
Section 2.2. The Rank of a Matrix—Proofs of Theorems
Table of contents

1. Page 140 Number 6

2. Page 141 Number 14

3. Page 141 Number 18
Let $A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -4 & 4 & 1 & 4 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix}$. Find (a) $\text{rank}(A)$, (b) a basis for the row space of A, (c) a basis for the column space of A, (d) a basis for the nullspace of A.

Solution. We apply the process of Note 2.2.A and row reduce A:

\[
A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -4 & 4 & 1 & 4 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} -4 & 4 & 1 & 4 \\ 0 & 2 & 3 & 1 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix}
\]
Page 140 Number 6. Let \(A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -4 & 4 & 1 & 4 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix} \). Find (a) \(\text{rank}(A) \), (b) a basis for the row space of \(A \), (c) a basis for the column space of \(A \), (d) a basis for the nullspace of \(A \).

Solution. We apply the process of Note 2.2.A and row reduce \(A \):

\[
A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -4 & 4 & 1 & 4 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix}
\overset{R_1 \leftrightarrow R_2}{\sim}
\begin{bmatrix} -4 & 4 & 1 & 4 \\ 0 & 2 & 3 & 1 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix}
\overset{R_1 \rightarrow R_1 / (-4)}{\sim}
\begin{bmatrix} 1 & -1 & -1/4 & -1 \\ 0 & 2 & 3 & 1 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix}
\overset{R_3 \rightarrow R_3 - 3R_1}{\sim}
\begin{bmatrix} 1 & -1 & -1/4 & -1 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 11/4 & 3 \\ -4 & 0 & 1 & 2 \end{bmatrix}
\overset{R_4 \rightarrow R_4 + 4R_1}{\sim}
\begin{bmatrix} 1 & -1 & -1/4 & -1 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 11/4 & 3 \\ 0 & -4 & 0 & -2 \end{bmatrix}
\]
Let \(A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -4 & 4 & 1 & 4 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix} \). Find (a) \(\text{rank}(A) \), (b) a basis for the row space of \(A \), (c) a basis for the column space of \(A \), (d) a basis for the nullspace of \(A \).

Solution. We apply the process of Note 2.2.A and row reduce \(A \):

\[
A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -4 & 4 & 1 & 4 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix} \quad \overset{R_1 \leftrightarrow R_2}{\sim} \quad \begin{bmatrix} -4 & 4 & 1 & 4 \\ 1 & -1 & -1/4 & -1 \\ 0 & 2 & 3 & 1 \\ 3 & 3 & 2 & 0 \end{bmatrix} \quad \overset{R_1}{\sim} \quad \begin{bmatrix} 1 & -1 & -1/4 & -1 \\ 0 & 2 & 3 & 1 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix} \quad \overset{R_3 \rightarrow R_3 - 3R_1}{\sim} \quad \begin{bmatrix} 1 & -1 & -1/4 & -1 \\ 0 & 2 & 3 & 1 \\ 0 & 6 & 11/4 & 3 \\ 0 & -4 & 0 & -2 \end{bmatrix}
\]
Solution (continued).

\[
\begin{bmatrix}
1 & -1 & -1/4 & -1 \\
0 & 2 & 3 & 1 \\
0 & 6 & 11/4 & 3 \\
0 & -4 & 0 & -2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & -1 & -1/4 & -1 \\
0 & 2 & 3 & 1 \\
0 & 0 & -25/4 & 0 \\
0 & 0 & 6 & 0
\end{bmatrix}
\]

\[
R_3 \rightarrow R_3 - 3R_2
\]

\[
R_4 \rightarrow R_4 + 2R_2
\]

\[
R_4 \rightarrow R_4 + (24/25)R_3
\]

Since \(H \) is in row echelon form and has pivots in the first three columns we can apply Note 2.2.A to see that:

\(\text{rank}(A) = 3 \)
Solution (continued).

\[
\begin{bmatrix}
1 & -1 & -1/4 & -1 \\
0 & 2 & 3 & 1 \\
0 & 6 & 11/4 & 3 \\
0 & -4 & 0 & -2 \\
\end{bmatrix}
\]

\[
\begin{align*}
R_3 & \rightarrow R_3 - 3 R_2 \\
R_4 & \rightarrow R_4 + 2 R_2 \\
R_4 & \rightarrow R_4 + (24/25) R_3 \\
\end{align*}
\]

\[
\begin{bmatrix}
1 & -1 & -1/4 & -1 \\
0 & 2 & 3 & 1 \\
0 & 0 & -25/4 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

= \(H \).

Since \(H \) is in row echelon form and has pivots in the first three columns we can apply Note 2.2.A to see that:

(a) \(\text{rank}(A) = 3 \) (the number of pivots in \(H \)).
Solution (continued).

\[
\begin{bmatrix}
1 & -1 & -1/4 & -1 \\
0 & 2 & 3 & 1 \\
0 & 6 & 11/4 & 3 \\
0 & -4 & 0 & -2
\end{bmatrix}
\]

- \[R_3 \rightarrow R_3 - 3R_2\]
- \[R_4 \rightarrow R_4 + 2R_2\]
- \[R_4 \rightarrow R_4 + (24/25)R_3\]

\[
\begin{bmatrix}
1 & -1 & -1/4 & -1 \\
0 & 2 & 3 & 1 \\
0 & 0 & -25/4 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} = H.
\]

Since \(H\) is in row echelon form and has pivots in the first three columns we can apply Note 2.2.A to see that:

(a) \[\text{rank}(A) = 3\] (the number of pivots in \(H\)),
Solution (continued).
(b) a basis for the row space of A is the nonzero rows of

$$H = \begin{bmatrix}
1 & -1 & -1/4 & -1 \\
0 & 2 & 3 & 1 \\
0 & 0 & -25/4 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},$$

$$\{[1, -1, -1/4, -1], [0, 2, 3, 1], [0, 0, -25/4, 0]\} \quad \text{(of course we could clean this up by multiplying the first and third vectors by 4 and getting the basis } \{[4, -4, -1, -4], [0, 2, 3, 1], [0, 0, -25, 0]\})$$,
Solution (continued).

(c) a basis for the column space of \(A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -4 & 4 & 1 & 4 \\ 3 & 3 & 2 & 0 \\ -4 & 0 & 1 & 2 \end{bmatrix} \) is given by the columns of \(A \) corresponding to columns of \(H = \begin{bmatrix} 1 & -1 & -1/4 & -1 \\ 0 & 2 & 3 & 1 \\ 0 & 0 & -25/4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \) which contain pivots, \(\left\{ \begin{bmatrix} 0 \\ -4 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix} \right\} \).
Solution (continued). (d) For a basis for the nullspace of A, we consider the homogeneous system $A\vec{x} = \vec{0}$, which has (by Theorem 1.6) the same solution as $H\vec{x} = \vec{0}$. To simplify computations, we further row reduce the augmented matrix $[H | \vec{0}]$:

$$[H | \vec{0}] = \begin{bmatrix} 1 & -1 & -1/4 & -1 & 0 \\ 0 & 2 & 3 & 1 & 0 \\ 0 & 0 & -25/4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_2 \rightarrow R_2/2$$

$$R_3 \rightarrow (-4/25)R_3$$

$$\begin{bmatrix} 1 & -1 & -1/4 & -1 & 0 \\ 0 & 1 & 3/2 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R_1 \rightarrow R_1 + R_2$$

$$\ldots$$
Solution (continued). (d) For a basis for the nullspace of A, we consider the homogeneous system $A\vec{x} = \vec{0}$, which has (by Theorem 1.6) the same solution as $H\vec{x} = \vec{0}$. To simplify computations, we further row reduce the augmented matrix $[H | \vec{0}]$:

$$
\begin{bmatrix}
1 & -1 & -1/4 & -1 & 0 \\
0 & 2 & 3 & 1 & 0 \\
0 & 0 & -25/4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

After performing the following row operations:

1. $R_2 \rightarrow R_2/2$
2. $R_3 \rightarrow (-4/25)R_3$
3. $R_1 \rightarrow R_1 + R_2$

We obtain:

$$
\begin{bmatrix}
1 & -1 & -1/4 & -1 & 0 \\
0 & 1 & 3/2 & 1/2 & 0 \\
0 & 0 & -1 & 1/10 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

Thus, the basis for the nullspace of A is given by the solutions to the system:

$$
\begin{align*}
1 & -1 & -1/4 & -1 & 0 \\
0 & 1 & 3/2 & 1/2 & 0 \\
0 & 0 & -1 & 1/10 & 0 \\
0 & 0 & 0 & 0 & 0
\end{align*}
$$
Solution (continued).

\[
\begin{align*}
R_1 & \rightarrow R_1 + R_2 \\
\text{...} & \\
R_1 & \rightarrow R_1 - (5/4)R_3 \\
R_2 & \rightarrow R_2 - (3/2)R_3
\end{align*}
\]

\[
\begin{bmatrix}
1 & 0 & 5/4 & -1/2 & 0 \\
0 & 1 & 3/2 & 1/2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & -1/2 & 0 \\
0 & 1 & 0 & 1/2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\] .

Returning to a system of equations, \ldots
Solution (continued).

\[
\begin{align*}
R_1 & \rightarrow R_1 + R_2 \\
\cdots & \\
R_1 & \rightarrow R_1 - (5/4)R_3 \\
R_2 & \rightarrow R_2 - (3/2)R_3
\end{align*}
\]

\[
\begin{bmatrix}
1 & 0 & 5/4 & -1/2 & 0 \\
0 & 1 & 3/2 & 1/2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & -1/2 & 0 \\
0 & 1 & 0 & 1/2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Returning to a system of equations, \ldots
Solution (continued). . .

\[
\begin{align*}
 x_1 &\quad -(1/2)x_4 = 0 &\quad \text{or} &\quad x_1 = (1/2)x_4 \\
 x_2 &\quad +(1/2)x_4 = 0 &\quad &\quad x_2 = -(1/2)x_4 \\
 x_3 &\quad = 0 &\quad &\quad x_3 = 0 \\
 0 &\quad = 0 &\quad &\quad x_4 = x_4.
\end{align*}
\]

With \(r = x_4/2 \) as a free variable we have

\[
\begin{align*}
 x_1 &= (1/2)(2r) = r \\
 x_2 &= -(1/2)(2r) = -r \\
 x_3 &= 0 \\
 x_4 &= 2r
\end{align*}
\]

So the general solution set for the system \(A\vec{x} = \vec{0} \) is

\[
\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix} r \in \mathbb{R} \right\}
\]

and so a basis for the nullspace of \(A \) is \(\{[1, -1, 0, 2]^T\} \). \(\square \)
Solution (continued). . .

\[
\begin{align*}
 x_1 - \frac{1}{2}x_4 &= 0 \\
 x_2 + \frac{1}{2}x_4 &= 0 \\
 x_3 &= 0 \\
 x_4 &= 0
\end{align*}
\]

or

\[
\begin{align*}
 x_1 &= \frac{1}{2}x_4 \\
 x_2 &= -\frac{1}{2}x_4 \\
 x_3 &= 0 \\
 x_4 &= x_4.
\end{align*}
\]

With \(r = x_4/2 \) as a free variable we have

\[
\begin{align*}
 x_1 &= \frac{1}{2}(2r) = r \\
 x_2 &= -\frac{1}{2}(2r) = -r \\
 x_3 &= 0 \\
 x_4 &= 2r
\end{align*}
\]

So the general solution set for the system \(A\vec{x} = \vec{0} \) is

\[
\begin{bmatrix}
 r \\
 -1 \\
 0 \\
 2
\end{bmatrix}
\]

and

so a basis for the nullspace of \(A \) is \([1, -1, 0, 2]^T\). □
Page 141 Number 14. Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A.

Solution. Let A be a $\ell \times m$ matrix, C a $m \times n$ matrix, and let $\vec{v} \in \mathbb{R}^\ell$ be in the column space of AC. Then \vec{v} is a linear combination of the columns of AC by the definition of column space (see Section 1.6).
Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A.

Solution. Let A be a $\ell \times m$ matrix, C a $m \times n$ matrix, and let $\vec{v} \in \mathbb{R}^\ell$ be in the column space of AC. Then \vec{v} is a linear combination of the columns of AC by the definition of column space (see Section 1.6). So there is some vector $\vec{x} \in \mathbb{R}^m$ such that $(AC)\vec{x} = \vec{v}$, since $(AC)\vec{x}$ is a linear combination of the columns AC with coefficients as the components of \vec{x} (see Note 1.3.A). Now $C\vec{x} \in \mathbb{R}^m$, say $\vec{y} = C\vec{x}$.

Page 141 Number 14. Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A.

Solution. Let A be a $\ell \times m$ matrix, C a $m \times n$ matrix, and let $\vec{v} \in \mathbb{R}^\ell$ be in the column space of AC. Then \vec{v} is a linear combination of the columns of AC by the definition of column space (see Section 1.6). So there is some vector $\vec{x} \in \mathbb{R}^m$ such that $(AC)\vec{x} = \vec{v}$, since $(AC)\vec{x}$ is a linear combination of the columns AC with coefficients as the components of \vec{x} (see Note 1.3.A). Now $C\vec{x} \in \mathbb{R}^m$, say $\vec{y} = C\vec{x}$. But $\vec{v} = (AC)\vec{x} = A(C\vec{x}) = A\vec{y}$ and $A\vec{y}$ is a linear combination of the columns of A with coefficients as the components of \vec{y}. That is, \vec{v} is in the column space of A.
Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A.

Solution. Let A be a $\ell \times m$ matrix, C a $m \times n$ matrix, and let $\vec{v} \in \mathbb{R}^\ell$ be in the column space of AC. Then \vec{v} is a linear combination of the columns of AC by the definition of column space (see Section 1.6). So there is some vector $\vec{x} \in \mathbb{R}^m$ such that $(AC)\vec{x} = \vec{v}$, since $(AC)\vec{x}$ is a linear combination of the columns AC with coefficients as the components of \vec{x} (see Note 1.3.A). Now $C\vec{x} \in \mathbb{R}^m$, say $\vec{y} = C\vec{x}$. But $\vec{v} = (AC)\vec{x} = A(C\vec{x}) = A\vec{y}$ and $A\vec{y}$ is a linear combination of the columns of A with coefficients as the components of \vec{y}. That is, \vec{v} is in the column space of A. So any vector \vec{v} in the column space of AC is in the column space of A, and the column space of A contains the column space of AC.
Page 141 Number 14. Let A and C be matrices such that the product AC is defined. Prove that the column space of AC is contained in the column space of A.

Solution. Let A be a $\ell \times m$ matrix, C a $m \times n$ matrix, and let $\vec{v} \in \mathbb{R}^\ell$ be in the column space of AC. Then \vec{v} is a linear combination of the columns of AC by the definition of column space (see Section 1.6). So there is some vector $\vec{x} \in \mathbb{R}^m$ such that $(AC)\vec{x} = \vec{v}$, since $(AC)\vec{x}$ is a linear combination of the columns AC with coefficients as the components of \vec{x} (see Note 1.3.A). Now $C\vec{x} \in \mathbb{R}^m$, say $\vec{y} = C\vec{x}$. But $\vec{v} = (AC)\vec{x} = A(C\vec{x}) = A\vec{y}$ and $A\vec{y}$ is a linear combination of the columns of A with coefficients as the components of \vec{y}. That is, \vec{v} is in the column space of A. So any vector \vec{v} in the column space of AC is in the column space of A, and the column space of A contains the column space of AC. \hfill \square
Let A and C be matrices such that the product AC is defined. Prove that $\text{rank}(AC) \leq \text{rank}(A)$.

Solution. By the definition of rank, $\text{rank}(AC)$ is the dimension of the column space of AC and $\text{rank}(A)$ is the dimension of the column space of A. From Exercise 2.2.14 we see that the column space of AC is contained in the column space of A. That is, the column space of AC is a subspace of the column space of A. Therefore, $\text{rank}(AC) \leq \text{rank}(A)$.

Let A and C be matrices such that the product AC is defined. Prove that $\text{rank}(AC) \leq \text{rank}(A)$.

Solution. By the definition of rank, $\text{rank}(AC)$ is the dimension of the column space of AC and $\text{rank}(A)$ is the dimension of the column space of A. From Exercise 2.2.14 we see that the column space of AC is contained in the column space of A. That is, the column space of AC is a subspace of the column space of A. A basis of the column space of A consists of $\text{rank}(A)$ vectors and by Theorem 2.1(1), “Alternative Characterization of a Basis,” these $\text{rank}(A)$ vectors span the column space of A. Now a basis of the column space of AC consists of $\text{rank}(AC)$ vectors and these $\text{rank}(AC)$ vectors are linearly independent by Theorem 2.1(2).
Let A and C be matrices such that the product AC is defined. Prove that $\text{rank}(AC) \leq \text{rank}(A)$.

Solution. By the definition of rank, $\text{rank}(AC)$ is the dimension of the column space of AC and $\text{rank}(A)$ is the dimension of the column space of A. From Exercise 2.2.14 we see that the column space of AC is contained in the column space of A. That is, the column space of AC is a subspace of the column space of A. A basis of the column space of A consists of $\text{rank}(A)$ vectors and by Theorem 2.1(1), “Alternative Characterization of a Basis,” these $\text{rank}(A)$ vectors span the column space of A. Now a basis of the column space of AC consists of $\text{rank}(AC)$ vectors and these $\text{rank}(AC)$ vectors are linearly independent by Theorem 2.1(2). So the basis of this column space of AC is a set of $\text{rank}(AC)$ linearly independent vectors in the column space of A and so by Theorem 2.2, “Relative Size of Spanning and Independent Sets,” the size of a linearly independent set is less than or equal to the size of a spanning set; hence $\text{rank}(AC) \leq \text{rank}(A)$. \square
Page 141 Number 18. Let A and C be matrices such that the product AC is defined. Prove that $\text{rank}(AC) \leq \text{rank}(A)$.

Solution. By the definition of rank, $\text{rank}(AC)$ is the dimension of the column space of AC and $\text{rank}(A)$ is the dimension of the column space of A. From Exercise 2.2.14 we see that the column space of AC is contained in the column space of A. That is, the column space of AC is a subspace of the column space of A. A basis of the column space of A consists of $\text{rank}(A)$ vectors and by Theorem 2.1(1), “Alternative Characterization of a Basis,” these $\text{rank}(A)$ vectors span the column space of A. Now a basis of the column space of AC consists of $\text{rank}(AC)$ vectors and these $\text{rank}(AC)$ vectors are linearly independent by Theorem 2.1(2). So the basis of this column space of AC is a set of $\text{rank}(AC)$ linearly independent vectors in the column space of A and so by Theorem 2.2, “Relative Size of Spanning and Independent Sets,” the size of a linearly independent set is less than or equal to the size of a spanning set; hence $\text{rank}(AC) \leq \text{rank}(A)$. □