Chapter 2. Dimension, Rank, and Linear Transformations
Section 2.4. Linear Transformations of the Plane—Proofs of Theorems

Solution. Since \(A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \) represents a rotation of \(\mathbb{R}^2 \) about the origin through an angle of \(\theta \), then \(A^3 \) represents a rotation of \(\mathbb{R}^2 \) about the origin through an angle \(3\theta \). So

\[
\begin{bmatrix} \cos 3\theta & -\sin 3\theta \\ \sin 3\theta & \cos 3\theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^3
= \begin{bmatrix} \cos^3 \theta - \sin^2 \theta \cos \theta & -2 \cos \theta \sin \theta \\ 2 \cos \theta \sin \theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
= \begin{bmatrix} \cos^3 \theta - \cos \theta \sin^2 \theta - 2 \cos \theta \sin^2 \theta & -2 \cos^2 \theta \sin \theta - 2 \cos \theta \sin \theta \cos \theta \\ 2 \cos^2 \theta \sin \theta + \cos \theta \sin^2 \theta & \cos \theta \sin \theta - \sin^3 \theta - 2 \cos \theta \sin \theta \cos \theta \end{bmatrix}.
\]

Hence \(\cos 3\theta = \cos^3 \theta - 3 \cos \theta \sin^2 \theta \) and \(\sin 3\theta = 3 \cos^2 \theta \sin \theta - \sin^3 \theta \).
Solution (continued).

\[
\begin{bmatrix}
1 & -m & 0 \\
m & 1 & 1 \\
\end{bmatrix}
\begin{pmatrix}
R_3-R_2-mR_1 \\
R_3-R_2/(1+m^2) \\
\end{pmatrix}
\begin{bmatrix}
1 & -m & 0 \\
0 & 1 & 1 \\
\end{bmatrix}
\begin{pmatrix}
R_2 & R_3 \\
R_1+R_2 & m/(1+m^2) \\
\end{pmatrix},
\]

so \(c_1 = m/(1+m^2)\) and \(c_2 = 1/(1+m^2)\). Therefore,

\[
T(\vec{e}_1) = T\left(\frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}\vec{b}_2\right) = \frac{1}{1+m^2}T(\vec{b}_1) - \frac{m}{1+m^2}T(\vec{b}_2)
\]

\[
= \frac{1}{1+m^2}\vec{b}_1 - \frac{m}{1+m^2}(-\vec{b}_2) = \frac{1}{1+m^2}[1,m] + \frac{m}{1+m^2}[-m,1],
\]

\[
= \begin{bmatrix}
1-m^2 & 2m \\
1+m^2 & 1+m^2
\end{bmatrix}, \ldots
\]

\[
T(\vec{b}_2) = T\left(\frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}\vec{b}_2\right) = \frac{m}{1+m^2}T(\vec{b}_1) + \frac{1}{1+m^2}T(\vec{b}_2)
\]

\[
= \frac{m}{1+m^2}\vec{b}_1 + \frac{1}{1+m^2}\vec{b}_2 = \frac{m}{1+m^2}[1,m] - \frac{1}{1+m^2}[-m,1],
\]

\[
= \begin{bmatrix}
2m & m^2-1 \\
1+m^2 & 1+m^2
\end{bmatrix}.
\]

So the matrix \(A\) representing \(T\) is

\[
A = \begin{bmatrix}
\frac{1-m^2}{1+m^2} & \frac{2m}{1+m^2} \\
\frac{2m}{1+m^2} & \frac{m^2-1}{1+m^2}
\end{bmatrix}.
\]

\(\square\)

Page 165 Number 8 (iii, iv)

Page 165 Number 8 (iii, iv). Let \(T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}\).

(iii) Show that \(T\) is a vertical expansion followed by a reflection about the x-axis if \(r < -1\).

(iv) Show that \(T\) is a vertical contraction followed by a reflection about the x-axis if \(-1 < r < 0\).

Solution. (iii) If \(r < -1\) then \(|r| > 1\) and so \(A_1 = \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix}\) is the standard matrix representation of a linear transformation \(T_1\) which is a vertical expansion. Next, \(X = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\) is the standard matrix representation of a linear transformation \(T_1\) which is a reflection about the x-axis. Now

\[
XA_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -|r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}
\]

and so \(T\) is a vertical expansion followed by a reflection about the x-axis.

Page 165 Number 8 (iii, iv) (continued)

Page 165 Number 8 (iii, iv). Let \(T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}\).

(iii) Show that \(T\) is a vertical expansion followed by a reflection about the x-axis if \(-1 < r < 0\).

Solution (continued). (iv) If \(-1 < r < 0\) then \(0 < |r| < 1\) and so \(A_2 = \begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix}\) is the standard matrix representation of a linear transformation \(T_2\), which is a vertical contraction. With \(X\) as in part (iii), we have

\[
XA_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & |r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -|r| \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix}
\]

and so \(T\) is a vertical contraction followed by a reflection about the x-axis. \(\square\)
Theorem 2.4.A

Theorem 2.4.A. Geometric Description of Invertible Transformations of \(\mathbb{R}^2 \).

A linear transformation \(T \) of the plane \(\mathbb{R}^2 \) into itself is invertible if and only if \(T \) consists of a finite sequence of:

- Reflections in the x-axis, the y-axis, or the line \(y = x \);
- Vertical or horizontal expansions or contractions; and
- Vertical or horizontal shears.

Proof. The three elementary row operations correspond to \(2 \times 2 \) matrices as follows:

1. Row Interchange: \(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \).
2. Row Scaling: \(B_1 = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix} \) and \(B_2 = \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \).
3. Row Addition: \(C_1 = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \) and \(C_2 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix} \).

Proof (continued). Now \(A \) corresponds to reflection about the line \(y = x \), \(B_1 \) with \(r = -1 \) corresponds to reflection about the y-axis, \(B_1 \) corresponds to a horizontal expansion if \(r > 1 \), \(B_1 \) corresponds to a horizontal contraction if \(0 < r < 1 \), \(B_1 \) corresponds to a horizontal expansion followed by a reflection about the y-axis if \(r < -1 \) (similar to Exercise 8(iii)), \(B_2 \) corresponds to a horizontal contraction followed by a reflection about the y-axis if \(-1 < r < 0 \) (similar to Exercise 8(iv)), \(B_2 \) with \(r = -1 \) corresponds to reflection about the x-axis, \(B_2 \) corresponds to a vertical expansion if \(r > 1 \), \(B_2 \) corresponds to a vertical contraction if \(0 < r < 1 \), \(B_2 \) corresponds to a vertical expansion followed by a reflection about the x-axis if \(-1 < r < 0 \) (as shown in Exercise 8(iv)), \(C_1 \) corresponds to a vertical shear, and \(C_2 \) corresponds to a horizontal shear.

Page 165 Number 14

Page 165 Number 14. Consider \(T([x, y]) = [x + y, 2x - y] \). Find the standard matrix representation and write it as a product of elementary matrices. Then describe \(T \) as a sequence of reflections, expansions, contractions, and shears.

Solution. First, \(T([1, 0]) = [1, 2] \) and \(T([0, 1]) = [1, -1] \), so the standard matrix representation of \(T \) is \(A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \). We use the technique of Section 1.5 to write \(A \) as a product of elementary matrices. We have

\[
A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = E_1^{-1},
\begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E_2^{-1},
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E_3^{-1},
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = E_3^{-1}
\]
Page 165 Number 14. Consider \(T([x, y]) = [x + y, 2x - y] \). Find the standard matrix representation and write it as a product of elementary matrices. Then describe \(T \) as a sequence of reflections, expansions, contractions, and shears.

Solution (continued). So

\[
A = E_1^{-1}E_2^{-1}E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.
\]

So \(T \) consist of in order (reading from right to left) a horizontal shear, a vertical expansion and a reflection about the x-axis (see Exercise 8), and a vertical shear.

Page 166 Number 18. Use algebraic properties of the dot product to compute \(\| \bar{u} - \bar{v} \|^2 = (\bar{u} - \bar{v}) \cdot (\bar{u} - \bar{v}) \), and prove from the resulting equation that a linear transformation \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) that preserves length also preserves the dot product.

Solution. Let \(\bar{u} \) and \(\bar{v} \) be any vectors in \(\mathbb{R}^2 \). Then

\[
\| \bar{u} - \bar{v} \|^2 = (\bar{u} - \bar{v}) \cdot (\bar{u} - \bar{v}) = \bar{u} \cdot \bar{u} - \bar{v} \cdot \bar{v} = \|\bar{u}\|^2 - 2\bar{u} \cdot \bar{v} + \|\bar{v}\|^2.
\]

Solving for \(\bar{u} \cdot \bar{v} \) gives

\[
\bar{u} \cdot \bar{v} = \frac{1}{2}(\|\bar{u}\|^2 - \|\bar{v}\|^2 - \|\bar{u} - \bar{v}\|^2)
\]

Similarly, \(T(\bar{u}) \cdot T(\bar{v}) = \frac{1}{2}(\| T(\bar{u}) \|^2 + \| T(\bar{v}) \|^2 - \| T(\bar{u} - \bar{v}) \|^2) \).

Page 167 Number 19. Suppose that \(T_A : \mathbb{R}^2 \to \mathbb{R}^2 \) preserves both length and angle. Prove that the two column vectors of the matrix \(A \) are orthogonal unit vectors.

Proof. Since \(A \) is the standard matrix representation of \(T \), the columns of \(A \) are \(T(\hat{e}_1) = T([1, 0]) \) and \(T(\hat{e}_2) = T([0, 1]) \) by Corollary 2.3A, “Standard Matrix Representation of Linear Transformations.” Since \(T_A \) preserves lengths then \(\| T(\hat{e}_1) \| = \| \hat{e}_1 \| = 1 \) and \(\| T(\hat{e}_2) \| = \| \hat{e}_2 \| = 1 \), so the columns of \(A \) are unit vectors. Since \(T \) preserves angles \(\hat{e}_1 \perp \hat{e}_2 \) then \(T(\hat{e}_1) \perp T(\hat{e}_2) \); that is, the columns of \(A \) are orthogonal, as claimed.