Linear Algebra

Chapter 7. Change of Basis

Section 7.2. Matrix Representations and Similarity—Proofs of Theorems

Page 406 number 2. Consider the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^2$ defined by $T([x, y]) = [2x + 3y, x + 2y]$ and ordered bases $B = ([1, -1], [1, 1])$ and $B' = ([2, 3], [1, 2])$. Find the matrix representations of T, R_B and $R_{B'}$. Find an invertible matrix C such that $R_{B'} = C^{-1}R_BC$.

Solution. We need (omitting some computations):

- $T([1, -1])_B = [0, -1]$
- $T([1, 1])_B = [1, 4]$
- $T([2, 3])_{B'} = [18, -23]$
- $T([1, 2])_{B'} = [-11, -14]$

So $R_B = [0, 1; -1, 4]$ and ...

Page 406 number 2 (continued 1)

Solution (continued). ...

$$R_{B'} = [T(\mathbf{b}_1)_{B'}, T(\mathbf{b}_2)_{B'}] = \begin{bmatrix} 18 & 11 \\ -23 & -14 \end{bmatrix}.$$

Notice that we could have formed R_B by direct row reduction of $[\mathbf{b}_1 | T(\mathbf{b}_1) T(\mathbf{b}_2)] \sim [I | R_B]$ (and similarly for $R_{B'}$); see Example 7.2.2 on pages 299 and 400. By Theorem 7.1, $C = C_{B',B}$ so we consider the augmented matrix:

$$[M_B | M_{B'}] = [\mathbf{b}_2 | \mathbf{b}_1 \mathbf{b}_2] = \begin{bmatrix} 1 & 1 & 2 & 1 \\ -1 & 1 & 3 & 2 \end{bmatrix} \overset{R_2 \rightarrow R_2 / 2}{\rightarrow} \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 5/2 & 3/2 \end{bmatrix} \overset{R_1 \rightarrow R_1 - R_2}{\rightarrow} \begin{bmatrix} 1 & 0 & -1/2 & -1/2 \\ 0 & 1 & 5/2 & 3/2 \end{bmatrix} = [I | C_{B',B}]$$

So $C = C_{B',B} = \frac{1}{2} \begin{bmatrix} -1/2 & -1/2 \\ 5/2 & 3/2 \end{bmatrix}$. □

Theorem 7.1. Significance of the Similarity Relationship for Matrices.

Two $n \times n$ matrices are similar if and only if they are matrix representations of the same linear transformation T relative to suitable ordered bases.

Proof. Theorem 7.1 shows that matrix representations of the same transformation relative to different bases are similar. Now for the converse. Let A be an $n \times n$ matrix representing transformation T, and let F be similar to A, say $F = C^{-1}AC$. Since C is invertible, its columns are independent and form a basis for \mathbb{R}^n. Let B be the ordered basis having as jth vector the jth column vector of C. Then C is the change-of-coordinates matrix from B to the standard ordered basis E. That is, $C = C_{B,E}$. Therefore $F = C^{-1}AC = C_{E,B}A C_{B,E}$ is the matrix representation of T relative to basis B. □
Theorem 7.2. Eigenvalues and Eigenvectors of Similar Matrices.

Let \(A \) and \(R \) be similar \(n \times n \) matrices, so that \(R = C^{-1}AC \) for some invertible \(n \times n \) matrix \(C \). Let the eigenvalues of \(A \) be the (not necessarily distinct) numbers \(\lambda_1, \lambda_2, \ldots, \lambda_n \).

1. The eigenvalues of \(R \) are also \(\lambda_1, \lambda_2, \ldots, \lambda_n \).

Proof. The characteristic equation for matrix \(R \) is \(\det(R - \lambda I) \) and so

\[
\det(R - \lambda I) = \det(C^{-1}AC - \lambda I) = \det(C^{-1}(A - \lambda I)C) = \det(C^{-1}) \det(A - \lambda I) \det(C) \text{ by Theorem 4.4}
\]

\[
= \frac{1}{\det(C)} \det(A - \lambda I) \det(C) \text{ by Page 262 number 31}
\]

\[
= \det(A - \lambda I).
\]

Therefore the characteristic equation of \(R \) and \(A \) are the same, and so \(R \) and \(A \) have the same eigenvalues.

Page 407 Number 20.

Let \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) be the linear transformation defined by \(T([x_1, x_2, x_3]) = [x_1, 4x_2 + 7x_3, 2x_2 - x_3] \). Determine whether \(T \) is diagonalizable.

Solution. First we need the standard matrix representation of \(T \):

\[
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 7 & -1 \end{bmatrix}.
\]

For the eigenvalues of \(T \), we calculate the eigenvalues of \(A \) (see Definition 5.2):

\[
\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 4 - \lambda & 2 \\ 0 & 7 & -1 - \lambda \end{vmatrix} = (1-\lambda)((4-\lambda)(-1-\lambda)-(2)(7))
\]

\[
= (1-\lambda)(-4-3\lambda+\lambda^2-14) = (1-\lambda)(\lambda^2-3\lambda-18) = (1-\lambda)(\lambda-6)(\lambda+3).
\]

Page 407 Number 20 (continued).

Setting \(\det(A - \lambda I) = (1-\lambda)(\lambda-6)(\lambda+3) = 0 \) we see that the eigenvalues of \(T \) (and \(A \)) are \(\lambda_1 = -3, \lambda_2 = 1, \lambda_3 = 6 \). Since \(A \) is \(3 \times 3 \) and \(A \) has 3 distinct eigenvalues, then \(A \) is a diagonalizable matrix by Theorem 5.3. So by Theorem 5.5, the algebraic multiplicity of each eigenvalue of \(A \) (and hence of \(T \)) is equal to its geometric multiplicity. So by Definition 7.2, \(\boxed{\text{YES}} \) \(T \) is diagonalizable.