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Page 417 Number 4(b)

Page 417 Number 4(b)

Page 417 Number 4(b). Find the symmetric coefficient matrix of the
quadratic form x12 - 2)(22 + xg + 6x§ — 2x1x4 + 6x2x4 — 8x1x3.

Solution. From part (a) we have the upper-triangular coefficient matrix

1 0 -8 -2
0 -2 0 6
U= 0O 0 1 ©

0O 0 0 6

We take ajj = aji = ujj/2 for i < j to get

1 0 -4 -1
0 -2 0 3
A=l 4 0 1 o0
-1 3 0 6
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Page 417 Number 4(a)

Page 417 Number 4(a). Find the upper-triangular coefficient matrix of
the quadratic form xl2 - 2x§ + x‘% + fo — 2x1X4 + 6x0x4 — 8x1X3.

Solution. We take the coefficient of x;x; where i < j as wjj. All uj = 0 for

i > j. So we have for the nonzero ujj: u1 =1, upp = =2, uzz3 =1,
Ugg = 6, g = —2, Uzgq = 6, 3 = —B8. Hence
1 0 -8 -2
0 -2 0 6
U= 0O 0 1 0
0 0 0 6
O
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Page 417 Number 12

Page 417 Number 12. Consider the quadratic form x2 + 2xy + y2. Find
an orthogonal substitution that diagonalizes the quadratic form and find
the diagonalized form.

Solution. For x? 4 2xy + y?, the upper-triangular coefficient matrix is

U= é f } so the symmetric coefficient matrix is A = [ 1 1 ] We
need the eigenvalues of A, so consider
[ 1I=A 1 B 5 2
det(A—AI)_‘ 1 1_/\‘_{1—)\)—(1)

1-2X0+ X2 —1=)X -2\ =\\-2),

so that the eigenvalues of A are A1 = 0 and Ay = 2. Now for the
eigenvectors.
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Page 417 Number 12 (continued 1) Page 417 Number 12 (continued 2)

Solution (continued).

Solution (continued).
A1 = 0 We consider the system

Ri—R,
~ 1 1[o7*==%T1 1|0 [ ‘ ] ;
- = . 0 010
A= MT]0] [11‘0] [o 0‘0]
— - _ vi—v =10 Vi= o . .
Soweneed 1T V(z} - g 2 - szz or with r = v» as a free variable, So we need 0=0 % n=v, & with s = v, as a free variable,
— . 1 o
Vi=r [ } ] where r € R, r # 0. We need a unit eigenvector so we take V2=S5 [ 1 } where s € R, s # 0. We need a unit eigenvector so we take
. -1 ~1/V/2 _ . [1] [1/vV2 .
= — 1 — =1/v2and h = = = .S der th
r—l/\/fandvl—\/ﬁ[ 1}_[ 1/\/5]‘ /V/2 and v, \/2[1] [1/\/5 o we consider the
orthogonal matrix
A> = 2 We consider the system
o i [ =12 132
4 -1 1 ]o]R=RtRerg o |0 C=[n = [ .
— = 1/vV2 1/v2
(A= 2T 0] [1 —1‘0} [1 ~1 0} [¥2 12
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L Poge 17 Number 12
Page 417 Number 12 (continued 3)

Solution (continued). The orthogonal substitution is

SR RVEVIIN

{ (-1/vV2)t1 + (1/V2)t ]
B (1/V2)tn +(1/V2)t2 |°

The diagonal form is then

RTAZR = M8 + Xot? =08 + 215 =| 28.
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