Chapter 10. Solving Large Systems

Note. In this chapter, Fraleigh and Beauregard consider numerical algorithms, the results of computational techniques, and “consideration of time” (and round-off error). In Section 10.1, a consideration of “flops” (i.e., a single arithmetic operation) is given. We skip this part of Chapter 10 and go straight into the more theoretical topic of LU factorization.

10.2 The LU-Factorization

Note. In this section, we first consider a system of equations of the form $A\vec{x} = \vec{b}$ with a unique solution which can be solved using Gauss-Jordan elimination but without using the row operation of interchanging rows. We will consider the more general case which allows interchanging rows later in the section.

Note. If coefficient matrix A can be put in row echelon form without row interchanges (so the only needed elementary row operation is adding a multiple of of one row to another; there is no need to scale any rows since we do not need the pivots to be 1), then there is an upper triangular matrix U and a sequence of elementary matrices E_i such that $E_hE_{h-1}\cdots E_2E_1A = U$. This is the key observation to showing the existence of an LU-factorization of such a matrix.
Theorem 10.A. If A is an $n \times n$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular matrix L and an upper triangular matrix U such that $A = LU$.

Example 1. The proof of Theorem 10.A gives the algorithm by which the LU-factorization of an appropriate matrix can be found. We row reduce A to row echelon form U and, as each elementary row operation is performed in the reduction of A, perform the inverse of that operation to a matrix starting with the identity matrix. This will build up matrix L from the identity by filling in the entries in the first column from top to bottom (this is backwards from the order given in the proof). With

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 8 & 4 \\ -1 & 3 & 4 \end{bmatrix} \quad \text{and} \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c}
A \\
R_2 \rightarrow R_2 - 2R_1 \\
R_3 \rightarrow R_3 + R_1 \\
R_3 \rightarrow R_3 - 3R_2 \\
\end{array} \quad \begin{array}{c}
I \\
R_2 \rightarrow R_2 + 2R_1 \\
R_3 \rightarrow R_3 - R_1 \\
R_3 \rightarrow R_3 + 3R_1 \\
\end{array}$$
So we have
\[
U = \begin{bmatrix}
1 & 3 & -1 \\
0 & 2 & 6 \\
0 & 0 & -15
\end{bmatrix} \quad \text{and} \quad L = \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 3 & 1
\end{bmatrix}.
\]
Notice that in fact \(A = LU \).

Example 2. Solve the system
\[
\begin{align*}
x_1 + 3x_2 - x_3 &= -4 \\
2x_1 + 8x_2 + 4x_3 &= 2 \\
-x_1 + 3x_2 + 4x_3 &= 4.
\end{align*}
\]
Notice that the coefficient matrix is the same as given in example 1. Also, matrix \(L \) records the row operations used in the reduction of \(A \) (but indirectly).

Solution. We minimize the number of arithmetic operations using the information from Example 1:
\[
\vec{b} = \begin{bmatrix}
-4 \\
2 \\
4
\end{bmatrix} \quad R_2 \rightarrow R_2 - 2R_1 \quad \begin{bmatrix}
-4 \\
10 \\
4
\end{bmatrix} \quad R_3 \rightarrow R_3 + R_1 \quad \begin{bmatrix}
-4 \\
10 \\
0
\end{bmatrix} \quad R_3 \rightarrow R_3 - 3R_2 \quad \begin{bmatrix}
-4 \\
10 \\
30
\end{bmatrix} = \vec{c}.
\]
Then the augmented matrix \([A \mid \vec{b}]\) is row equivalent to \([U \mid \vec{c}]\). Since \([U \mid \vec{c}]\) has an upper triangular coefficient matrix then it is easy to solve with back substitution:
\[
[U \mid \vec{c}] = \begin{bmatrix}
1 & 3 & -1 & -4 \\
0 & 2 & 6 & 10 \\
0 & 0 & -15 & -30
\end{bmatrix} \quad \text{implies} \quad \begin{align*}
x_1 + 3x_2 - x_3 &= -4 \\
2x_2 + 6x_3 &= 10 \\
-15x_3 &= -30.
\end{align*}
\]
So \(x_3 = 2 \), \(x_2 = -1 \), and \(x_1 = 1 \).
Definition. Let A be an $n \times n$ matrix which can be put in row echelon form without interchanging rows. If $A = LU$ where the diagonal entries of L are all q, then the combined $L \setminus U$ display for A is an $n \times n$ matrix with the same diagonal entries as matrix U, entries above the diagonal the same as the corresponding entries of U, and the entries below the diagonal the same as the corresponding entries of L.

Note. The $L \setminus U$ display for A is equal to $L + U - I$. In Example 1, we have

$$U = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 6 \\ 0 & 0 & -15 \end{bmatrix} \quad \text{and} \quad L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{bmatrix}.$$

So the $L \setminus U$ display is

$$\begin{bmatrix} 1 & 3 & -1 \\ 2 & 2 & 6 \\ -1 & 3 & -15 \end{bmatrix}.$$

Note. When matrix A is of the proper type to have an LU-factorization, the factorization is not unique. If $A = LU$ then $A = (rL)((1/r)U)$ for any $r \neq 0$. The technique given above produces a matrix L with entries of 1 along the diagonal, but this is not necessary.

Note. If $A = LU$ where the diagonal entries of L are all 1, then we can multiply row i of matrix U by $1/u_{ii}$ and produce an upper triangular matrix U^* with diagonal entries of a. We then create $n \times n$ diagonal matrix D with $d_{ii} = u_{ii}$. This gives $U = DU^*$. We then have a factorization of A as $A = LDU^*$ where the diagonal entries of L and U^* are all 1. The next theorem tells us that when such a factorization of a matrix exists, it is unique.
Theorem 10.1. Unique Factorization.

Let A be an $n \times n$ matrix. When a factorization $A = LDU$ exists where

1. L is lower triangular with all main diagonal entries 1,

2. U is upper triangular with all main diagonal entries 1, and

3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Definition. An $n \times n$ matrix which is a product of elementary matrices which represents row interchanges is a permutation matrix.

Note. By using a permutation matrix, we can finally address the LU-factorization of a matrix which cannot be put in row echelon form without the use of row interchanges.

Theorem 10.2. LU-Factorization.

Let A be an invertible square matrix. Then there exists a permutation matrix P, a lower triangular matrix L, and an upper triangular matrix U such that $PA = LU$.
Example 7. Consider \[
\begin{bmatrix}
1 & 3 & 2 \\
-2 & -6 & 1 \\
2 & 5 & 7
\end{bmatrix}
\] We have
\[
A \xrightarrow{R_2 \rightarrow R_2 + 2R_1} \begin{bmatrix}
1 & 3 & 2 \\
0 & 0 & 5 \\
2 & 5 & 7
\end{bmatrix} \xrightarrow{R_3 \rightarrow R_3 - 2R_1} \begin{bmatrix}
1 & 3 & 2 \\
0 & 0 & 5 \\
0 & -1 & 3
\end{bmatrix}.
\]

So let \(P = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix} \). Then \(U = \begin{bmatrix}
1 & 3 & 2 \\
0 & -1 & 3 \\
0 & 0 & 5
\end{bmatrix} \). The two operations on \(A \) which produce \(U \) give \(L = \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
-2 & 0 & 1
\end{bmatrix} \) (notice that the second and third rows of \(A \) and \(U \) involve a row interchange). We then have
\[
PA = \begin{bmatrix}
1 & 3 & 2 \\
2 & 5 & 7 \\
-2 & -6 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
-2 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 3 & 2 \\
0 & -1 & 3 \\
0 & 0 & 5
\end{bmatrix} = LU.
\]