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Chapter 1. Vectors, Matrices, and Linear Spaces

1.2. The Norm and Dot Product

Note. In the previous section we mentioned that in physics a vector is an object

with magnitude and direction. In this section we define the magnitude of a vector

and give a operation, the dot product, which will let us compute both the magnitude

of a vector and to define the angle between two vectors.

Definition 1.5. Let ~v = [v1, v2, . . . , vn] ∈ R
n. The norm or magnitude of ~v is
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2
+ · · · + v2

n
=

√

√

√

√

n
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Note. Definition 1.5 is consistent with the idea of a vector ~v in R
n, say ~v =

[v1, v2, . . . , vn], as an arrow (in standard position) with its tail at the origin (0, 0, . . . , 0)

and its head at the point (v1, v2, . . . , vn) in an n-dimensional Cartesian coordinate

system. This distance between points (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in R
n is

d =
√

(x1 − y1)2 + (x2 − y2)2 + · · · (xn − yn)2 (this is based on the Pythagorean

Theorem). So the length of the arrow representing ~v has length

√

(v1 − 0)2 + (v2 − 0)2 + · · · + (vn − 0)2 =
√

v2
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n = ‖~v‖

(see also Exercise 1.2.31). We now state some properties of the norm function.
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Theorem 1.2. Properties of the Norm in R
n.

For all ~v, ~w ∈ R
n and for all scalars r ∈ R, we have:

1. ‖~v‖ ≥ 0 and ‖~v‖ = 0 if and only if ~v = ~0.

2. ‖r~v‖ = |r|‖~v‖.
3. ‖~v + ~w‖ ≤ ‖~v‖ + ‖~w‖ (the Triangle Inequality).

Proof of (2). Let ~v ∈ R
n and let r be a scalar in R. Since ~v ∈ R

n, by Definition

1.A, “Vectors in R
n,” we have that ~v = [v1, v2, . . . , vn]. We have

‖r~v‖ = ‖r[v1, v2, . . . , vn]‖

= ‖[rv1, rv2, . . . , rvn]‖ by Definition 1.1(3), “Scalar Multiplication”

=
√

(rv1)2 + (rv2)2 + · · · + (rvn)2 by Definition 1.5

=
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r2(v2
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Note. The proof of Theorem 1.2(1) is easy; we will prove Theorem 1.2(3) later in

this section.

Note. A picture for the Triangle Inequality is:

1.2.22, page 22
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Definition. A vector with norm 1 is called a unit vector. When writing, unit

vectors are frequently denoted with a “hat”: ı̂.

Example. Page 31 number 8.

Definition 1.6. The dot product for ~v = [v1, v2, . . . , vn] and ~w = [w1, w2, . . . , wn] is

~v · ~w = v1w1 + v2w2 + · · · + vnwn =

n
∑

`=1

v`w`.

Notice. If we let θ be the angle between nonzero vectors ~v and ~w, then we get by

the Law of Cosines:

1.2.24, page 23

‖~v‖2 + ‖~w‖2 = ‖~v − ~w‖2 + 2‖~v‖‖~w‖ cos θ

or

(v2

1
+ v2

2
+ · · · + v2

n) + (w2

1
+ w2

2
+ · · · + w2

n)

= (v1 − w1)
2 + (v2 − w2)

2 + · · · + (vn − wn)
2 + 2‖~v‖‖~w‖ cos θ

or 2v1w1 + 2v2w2 + · · · + 2vnwn = 2‖~v‖‖~w‖ cos θ or 2~v · ~w = 2‖~v‖‖~w‖ cos θ or

cos θ =
~v · ~w

‖~v‖‖~w‖ .
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Definition. The angle between nonzero vectors ~v and ~w is

cos−1

(

~v · ~w

‖~v‖‖~w‖

)

= arccos

(

~v · ~w

‖~v‖‖~w‖

)

.

Example. Page 31 number 12.

Theorem 1.3. Properties of Dot Products.

Let ~u,~v, ~w ∈ R
n and let r ∈ R be a scalar. Then

D1. Commutivity of · : ~v · ~w = ~w · ~v.

D2. Distribution of · over Vector Addition: ~u · (~v + ~w) = ~u · ~v + ~u · ~w.

D3. r(~v · ~w) = (r~v) · ~w = ~v · (r ~w).

D4. ~v · ~v ≥ 0 and ~v · ~v = 0 if and only if ~v = ~0.

Example. Page 33 number 42b (Prove D2).

Note 1.2.A. ‖~v‖2 = ~v · ~v.

Definition. Two vectors ~v, ~w ∈ R
n are perpendicular or orthogonal, denoted ~v ⊥ ~w,

if ~v · ~w = 0.

Examples. Page 31 numbers 14 and 16.
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Page 26 Example 7. Prove that the sum of the squares of the lengths of the

diagonals of a parallelogram in R
n is equal to the sum of the squares of the lengths

of the sides. This is the parallelogram relation or the parallelogram law.

Note. We saw above that ASSUMING vectors in R
n satisfy Figure 1.2.24 (see the

proof of Example 7) implies cos θ =
~v · ~w

‖~v‖‖~w‖ . We know that for any θ we have

−1 ≤ cos θ ≤ 1 and so this gives

−‖~v‖‖~w‖ ≤ ~v · ~w ≤ ‖~v‖‖~w‖ or |~v · ~w| ≤ ‖~v‖‖~w‖.

Though a valid argument, we now give an algebraic proof of this inequality.

Theorem 1.4. Schwarz’s Inequality.

Let ~v, ~w ∈ R
n. Then

|~v · ~w| ≤ ‖~v‖‖~w‖.

Note. The whole purpose of introducing Schwarz’s Inequality is to prove Theorem

1.2(3), “The Triangle Inequality.”
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Theorem 1.5. The Triangle Inequality.

Let ~v, ~w ∈ R
n. Then ‖~v + ~w‖ ≤ ‖~v‖ + ‖~w‖.

Proof.

‖~v + ~w‖2 = (~v + ~w) · (~v + ~w) by Note 1.2.A

= ~v · ~v + 2~v · ~w + ~w · ~w by Theorem 1.3(D1) and (D2),

“Commutivity and Distribution of Dot Product”

≤ ‖~v‖2 + 2‖~v‖‖~w‖ + ‖~w‖2 by Schwarz’s Inequality

= (‖~v‖ + ‖~w‖)2.

Taking square roots yields ‖~v + ~w‖ ≤ ‖~v‖ + ‖~w‖.

Example. Page 31 number 36.
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