Chapter 1. Vectors, Matrices, and Linear Spaces 1.2. The Norm and Dot Product

Note. In the previous section we mentioned that in physics a vector is an object with magnitude and direction. In this section we define the magnitude of a vector and give a operation, the dot product, which will let us compute both the magnitude of a vector and to define the angle between two vectors.

Definition 1.5. Let $\vec{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right] \in \mathbb{R}^{n}$. The norm or magnitude of \vec{v} is

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}=\sqrt{\sum_{\ell=1}^{n}\left(v_{\ell}\right)^{2}} .
$$

Note. Definition 1.5 is consistent with the idea of a vector \vec{v} in \mathbb{R}^{n}, say $\vec{v}=$ $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$, as an arrow (in standard position) with its tail at the origin $(0,0, \ldots, 0)$ and its head at the point $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in an n-dimensional Cartesian coordinate system. This distance between points $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in \mathbb{R}^{n} is $d=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots\left(x_{n}-y_{n}\right)^{2}}$ (this is based on the Pythagorean Theorem). So the length of the arrow representing \vec{v} has length

$$
\sqrt{\left(v_{1}-0\right)^{2}+\left(v_{2}-0\right)^{2}+\cdots+\left(v_{n}-0\right)^{2}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}=\|\vec{v}\|
$$

(see also Exercise 1.2.31). We now state some properties of the norm function.

Theorem 1.2. Properties of the Norm in \mathbb{R}^{n}.

For all $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ and for all scalars $r \in \mathbb{R}$, we have:

1. $\|\vec{v}\| \geq 0$ and $\|\vec{v}\|=0$ if and only if $\vec{v}=\overrightarrow{0}$.
2. $\|r \vec{v}\|=|r|\|\vec{v}\|$.
3. $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$ (the Triangle Inequality).

Proof of (2). Let $\vec{v} \in \mathbb{R}^{n}$ and let r be a scalar in \mathbb{R}. Since $\vec{v} \in \mathbb{R}^{n}$, by Definition 1.A, "Vectors in \mathbb{R}^{n}," we have that $\vec{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. We have

$$
\begin{aligned}
\|r \vec{v}\| & =\left\|r\left[v_{1}, v_{2}, \ldots, v_{n}\right]\right\| \\
& =\left\|\left[r v_{1}, r v_{2}, \ldots, r v_{n}\right]\right\| \text { by Definition 1.1(3), "Scalar Multiplication" } \\
& =\sqrt{\left(r v_{1}\right)^{2}+\left(r v_{2}\right)^{2}+\cdots+\left(r v_{n}\right)^{2}} \text { by Definition } 1.5 \\
& =\sqrt{r^{2}\left(v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right)}=\sqrt{r^{2}} \sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}=|r|\|\vec{v}\| .
\end{aligned}
$$

Note. The proof of Theorem 1.2(1) is easy; we will prove Theorem 1.2(3) later in this section.

Note. A picture for the Triangle Inequality is:

1.2.22, page 22

Definition. A vector with norm 1 is called a unit vector. When writing, unit vectors are frequently denoted with a "hat": $\hat{\imath}$.

Example. Page 31 number 8.

Definition 1.6. The dot product for $\vec{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and $\vec{w}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ is

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}=\sum_{\ell=1}^{n} v_{\ell} w_{\ell}
$$

Notice. If we let θ be the angle between nonzero vectors \vec{v} and \vec{w}, then we get by the Law of Cosines:

$$
\text { 1.2.24, page } 23
$$

$$
\|\vec{v}\|^{2}+\|\vec{w}\|^{2}=\|\vec{v}-\vec{w}\|^{2}+2\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

or

$$
\begin{aligned}
\left(v_{1}^{2}+v_{2}^{2}\right. & \left.+\cdots+v_{n}^{2}\right)+\left(w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}\right) \\
& =\left(v_{1}-w_{1}\right)^{2}+\left(v_{2}-w_{2}\right)^{2}+\cdots+\left(v_{n}-w_{n}\right)^{2}+2\|\vec{v}\|\|\vec{w}\| \cos \theta
\end{aligned}
$$

or $2 v_{1} w_{1}+2 v_{2} w_{2}+\cdots+2 v_{n} w_{n}=2\|\vec{v}\|\|\vec{w}\| \cos \theta$ or $2 \vec{v} \cdot \vec{w}=2\|\vec{v}\|\|\vec{w}\| \cos \theta$ or $\cos \theta=\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}$.

Definition. The angle between nonzero vectors \vec{v} and \vec{w} is

$$
\cos ^{-1}\left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}\right)=\arccos \left(\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}\right) .
$$

Example. Page 31 number 12.

Theorem 1.3. Properties of Dot Products.

Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and let $r \in \mathbb{R}$ be a scalar. Then
D1. Commutivity of $\cdot: \vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$.
D2. Distribution of \cdot over Vector Addition: $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$.
D3. $r(\vec{v} \cdot \vec{w})=(r \vec{v}) \cdot \vec{w}=\vec{v} \cdot(r \vec{w})$.
D4. $\vec{v} \cdot \vec{v} \geq 0$ and $\vec{v} \cdot \vec{v}=0$ if and only if $\vec{v}=\overrightarrow{0}$.

Example. Page 33 number 42b (Prove D2).

Note 1.2.A. $\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}$.

Definition. Two vectors $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ are perpendicular or orthogonal, denoted $\vec{v} \perp \vec{w}$, if $\vec{v} \cdot \vec{w}=0$.

Examples. Page 31 numbers 14 and 16.

Page 26 Example 7. Prove that the sum of the squares of the lengths of the diagonals of a parallelogram in \mathbb{R}^{n} is equal to the sum of the squares of the lengths of the sides. This is the parallelogram relation or the parallelogram law.

Note. We saw above that ASSUMING vectors in \mathbb{R}^{n} satisfy Figure 1.2.24 (see the proof of Example 7) implies $\cos \theta=\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}$. We know that for any θ we have $-1 \leq \cos \theta \leq 1$ and so this gives

$$
-\|\vec{v}\|\|\vec{w}\| \leq \vec{v} \cdot \vec{w} \leq\|\vec{v}\|\|\vec{w}\| \text { or }|\vec{v} \cdot \vec{w}| \leq\|\vec{v}\|\|\vec{w}\|
$$

Though a valid argument, we now give an algebraic proof of this inequality.

Theorem 1.4. Schwarz's Inequality.

Let $\vec{v}, \vec{w} \in \mathbb{R}^{n}$. Then

$$
|\vec{v} \cdot \vec{w}| \leq\|\vec{v}\|\|\vec{w}\|
$$

Note. The whole purpose of introducing Schwarz's Inequality is to prove Theorem 1.2(3), "The Triangle Inequality."

Theorem 1.5. The Triangle Inequality.

Let $\vec{v}, \vec{w} \in \mathbb{R}^{n}$. Then $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$.

Proof.

$$
\begin{aligned}
\|\vec{v}+\vec{w}\|^{2}= & (\vec{v}+\vec{w}) \cdot(\vec{v}+\vec{w}) \text { by Note 1.2.A } \\
= & \vec{v} \cdot \vec{v}+2 \vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{w} \text { by Theorem 1.3(D1) and (D2), } \\
& \text { "Commutivity and Distribution of Dot Product" } \\
\leq & \|\vec{v}\|^{2}+2\|\vec{v}\|\|\vec{w}\|+\|\vec{w}\|^{2} \text { by Schwarz's Inequality } \\
= & (\|\vec{v}\|+\|\vec{w}\|)^{2} .
\end{aligned}
$$

Taking square roots yields $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$.

Example. Page 31 number 36.

