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Chapter 4. Determinants

4.2 The Determinant of a Square Matrix

Note. In this section we define the determinant of an n × n matrix. We will do

so recursively by defining the determinant of n × n matrix A in terms of related

(n−1)×(n−1) “submatrices” of A. This was foreshadowed in the previous section

when we defined the determinant of a 3×3 matrix in terms of three 2×2 matrices.

Definition. The minor matrix Aij of an n × n matrix A is the (n − 1) × (n − 1)

matrix obtained from A by eliminating the ith row and the jth column of A.

Example 4.2.A. Find A11, A12, and A13 for

A =











a11 a12 a13

a21 a22 a23

a31 a32 a33











.

Definition 4.1a. The determinant of Aij times (−1)i+j is the cofactor of entry aij

in A, denoted a′
ij.

Example. Page 262 Number 12.
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Note. We can write determinants of 3 × 3 matrices in terms of cofactors:

det(A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a11|A11| − a12|A12| + a13|A13|

= a11a
′
11 + a12a

′
12 + a13a

′
13.

Note. The following definition is recursive. For example, in order to process the

definition for n = 4 you must process the definition for n = 3, n = 2, and n = 1.

Definition 4.1b. The determinant of a 1× 1 matrix is its single entry. Let n > 1

and assume the determinants of order less than n have been defined. Let A = [aij]

be an n × n matrix. The cofactor of aij in A is a′
ij = (−1)i+j det(Aij) (as defined

above). The determinant of A is

det(A) = a11a
′
11 + a12a

′
12 + · · · + a1na

′
1n =

n
∑

i=1

a1ia
′
1i.

Example 4.2.B. Find the determinant of A =

















2 1 0 1

3 2 1 2

4 0 1 4

1 0 2 1

















.

Note. The following result can be useful; in particular, it allows us to take advan-

tage of zeros in a matrix to simplify computations.
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Theorem 4.2. General Expansion by Minors.

Let A be an n × n matrix. Then for any 1 ≤ r ≤ n and 1 ≤ s ≤ n we have that

the determinant of A is

det(A) = ar1a
′
r1 + ar2a

′
r2 + · · · + arna

′
rn (4)

and

det(A) = a1sa
′
1s + a2sa

′
2s + · · · + ansa

′
ns (5)

where a′
ij is the cofactor of Aij given in Definition 4.1.

Note. A proof of Theorem 4.2 is given in Appendix B (see pages A-7–A-9). It is a

lengthy proof and requires a knowledge of mathematical induction (which is given

in Appendix A).

Definition. Equation (4) is the expansion of det(A) by minors on the rth row of

A, and equation (5) is the expansion of det(A) by minors on the sth column of A.

Example 4.3.C. Find the determinant of A =

















0 0 0 1

0 1 2 0

0 4 5 9

1 15 6 57

















.

Example. Page 255 Example 4. Show that the determinant of an upper- or

lower-triangular square matrix is the product of its diagonal elements.
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Note. We combine the properties of determinants in the following theorem.

Theorem 4.2.A. Properties of the Determinant.

Let A be a square matrix.

1. The Transpose Property: det(A) = det(AT ).

2. The Row-Interchange Property: If two different rows of a square matrix A are

interchanged, the determinant of the resulting matrix is −det(A).

3. The Equal-Rows Property: If two rows of a square matrix A are equal, then

det(A) = 0.

4. The Scalar-Multiplication Property: If a single row of a square matrix A is

multiplied by a scalar r, the determinant of the resulting matrix if rdet(A).

5. The Row-Addition Property: If the product of one row of A by a scalar r is

added to a different row of A, the determinant of the resulting matrix is the

same as det(A).

Note 4.2.A. The properties of Theorem 4.2.A imply that we can perform elemen-

tary row operations on a matrix to introduce entries of 0 and simplify computations

of determinants (though we have to track how the row operations affect the deter-

minant). Since the computations of determinants is “computationally intense,” it

is worth the trouble to perform the row reduction. In fact, if A ∼ B and B results

from a sequence of elementary row operations which do not involve multiplication

of a row by a scalar, then det(A) = ±det(B). (we only need to know the number
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of row interchanges in converting A into B). In fact, we can always row reduce

any A to a row echelon form without multiplying a row by scalars. We only must

multiply by a scalar if we want the pivots to be 1. These observations are useful in

the proofs of the following two results.

Example. Page 261 Number 8.

Note. We now add one more result to our list of conditions which are equivalent

to the invertibility of a matrix (see also Theorem 1.12 of Section 1.5, Theorem 1.16

of Section 1.6, and Theorem 2.6 of Section 2.2).

Theorem 4.3. Determinant Criterion for Invertibility.

A square matrix A is invertible if and only if det(A) 6= 0. Equivalently, A is singular

if and only if det(A) = 0.

Note. We state on last property of determinants which we will occasionally use.

Theorem 4.4. The Multiplicative Property.

If A and B are n × n matrices, then det(AB) = det(A)det(B).

Examples. Page 262 Number 28, Page 262 Number 30, Page 262 Number 32.
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