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Chapter 5. Eigenvalues and Eigenvectors

5.1 Eigenvalues and Eigenvectors

Note. In optional Section 1.7, “Application to Population Distribution,” a model

is introduced in which a population is partitioned into several “states.” The per-

centage of the population in state i is denoted pi and for n states this results in

population distribution vector ~p = [p1, p2, . . . , pn]. A transition matrix T then de-

scribes how the population changes from one generation to the next (see Exercises

34-39 in Section 1.7). So after n time steps, the population distribution vector has

become T n~p. So this is one reason one might be interested in raising a matrix to

a power. In this chapter we give a shortcut to the process of raising a matrix to a

power.

Example. Page 286 Example 1. Fraleigh and Beauregard introduce a classic

example to motivate the study of eigenvalues and eigenvectors. Suppose a pair

of newly born rabbits are introduced to an environment. Suppose each pair of

rabbits produces no offspring during the first month of their lives but that each

pair produces one new pair each subsequent month. Start with F1 = 1 newly born

pair in the first month. In the second month there are also F2 = 1 pair of rabbits,

since the original pair is not old enough to reproduce. In the third month there

are F3 = 2 pairs, including one newly born pair. In the fourth month there are

F4 = 2 + 1 = 3 pairs since the original pair produces a new pair. Now the first

new pair starts to reproduce and we have F5 = F4 + F3 = 3 + 2 = 5. Under

this model (regardless of biological realism), at the kth month the number of pairs
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Fk is the number present in the previous month Fk−1 (since the model does not

account for mortality) plus the number present two months earlier, Fk−2, since this

is the number of pairs of breeding age and so each of these produces a new pair.

That is, Fk = Fk−1 + Fk−2. For initial conditions we define F0 = 0. We then get

the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .. If we represent the number of

pairs in months k − 1 and k as





Fk

Fk−1



 then we have Fk = Fk−1 + Fk−2 so that





Fk

Fk−1



 =





1 1

1 0









Fk−1

Fk−2



 =





Fk−1 + Fk−2

Fk−1



. Starting with





F1

F0



 =





1

0





we get




Fk

Fk−1



 =





1 1

1 0









Fk−1

Fk−2



 =





1 1

1 0





2 



Fk−2

Fk−3



 =





1 1

1 0





3 



Fk−3

Fk−4





= · · · =





1 1

1 0





k−1 



F1

F0



 =





1 1

1 0





k−1 



1

0



 .

Notice that even though A =





1 1

1 0



 consists only of 0’s and 1’s, it is still time

consuming to calculate the powers of A. We’ll use eigenvalues to find an explicit

formula for





1 1

1 0





k−1

in Section 5.3 and we’ll see that (see page 319):

Fk =
1√
5





(

1 +
√

5

2

)k

−
(

1 −
√

5

2

)k


 .

Note. We won’t see how eigenvalues and eigenvectors are used in addressing these

problems until the next section. So we now define these terms and show how to

calculate them.
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Definition 5.1. Let A be an n × n matrix. A scalar λ is an eigenvalue of A if

there is a nonzero column vector ~v ∈ R
n such that A~v = λ~v. The vector ~v is then

an eigenvector of A corresponding to λ.

Note. If A~v = λ~v then A~v − λ~v = ~0 and so (A − λI)~v = ~0. This equation has

a nontrivial solution only when det(A − λI) = 0 by Theorem 4.3, “Determinant

Criterion for Invertibility,” and Theorem 1.16 (the contrapositive of (1)⇒(3), which

would be stated as “If A is not invertible then the system A~x = ~0 has multiple

solutions”).

Definition. det(A − λI) is a polynomial of degree n with variable λ (where A is

n × n) called the characteristic polynomial of A, denoted p(λ), and the equation

p(λ) = 0 is called the characteristic equation.

Note 5.1.A. Since an eigenvector must be nonzero by definition, then the condition

det(A − λI) = 0 is necessary (and sufficient) for λ to be an eigenvalue. We then

have that (A − λI)~v = ~0 for some nonzero ~v and so to find the eigenvectors of λ

we solve the homogeneous system of equations (A−λI)~v = ~0 where the unknowns

are the components of ~v = [v1, v2, . . . , vn]. Since the system (A − λI)~v = ~0 has

a nonzero solution ~v, then any multiple of ~v is a solution and so there are an

infinite number of eigenvectors associated with λ. This is reflected in the solving

of the system (A− λI)~v = ~0 where we’ll see that there is at least one free variable

associated with eigenvalue λ.
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Examples. Page 300 Number 8, Page 300 Number 14. See Page 292 Example 4,

Page 293 Example 5, and Page 294 Example 6 for more worked examples.

Theorem 5.1. Properties of Eigenvalues and Eigenvectors.

Let A be an n × n matrix.

1. If λ is an eigenvalue of A with ~v as a corresponding eigenvector, then λk is an

eigenvalue of Ak, again with ~v as a corresponding eigenvector, for any positive

integer k.

2. If λ is an eigenvalue of an invertible matrix A with ~v as a corresponding eigenvec-

tor, then λ 6= 0 and 1/λ is an eigenvalue of A−1, again with ~v as a corresponding

eigenvector.

3. If λ is an eigenvalue of A, then the set Eλ consisting of the zero vector together

with all eigenvectors of A for this eigenvalue λ is a subspace of n-space, the

eigenspace of λ.

Note. The proofs of (1) and (3) are to be given in Exercises 27 and 29.

Note. We now define an eigenvalue and eigenvector for a linear transformation

between general vector spaces. The definition depends only on the linearity of the

transformation and so is valid even when dealing with infinite dimensional vector

spaces.
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Definition 5.2. Eigenvalues and Eigenvectors.

Let T be a linear transformation of a vector space V into itself. A scalar λ is an

eigenvalue of T if there is a nonzero vector ~v ∈ V such that T (~v) = λ~v. The vector

~v is then an eigenvector of T corresponding to λ.

Note 5.1.B. In the event that T is a linear transformation from R
n to R

n then

there is an n× n matrix A such that T (~x) = A~x for ~x ∈ R
n by Corollary 2.3.A. In

this case, the eigenvalues and eigenvectors of T and A coincide. The next example

illustrates the use of Definition 5.2 in the setting of the infinite dimensional vector

space D∞ of all functions mapping R into R which are differentiable of all orders

(see Notes 3.2.A).

Example. Page 298 Example 8. Let D∞ be the vector space of all functions

mapping R onto R and having derivatives of all order. Let T : D∞ → D∞ be the

differentiation map so that T (f) = f ′. Describe all eigenvalues and eigenvectors of

T . (Notice that by Example 3.4.5, T actually is linear.)

Examples. Page 300 number 18, Page 301 Number 30, Page 301 Number 32, Page

302 Number 38, Page 302 Number 40.
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