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Chapter 5. Eigenvalues and Eigenvectors

5.2 Diagonalization

Note. In this section, we define what it means to “diagonalize” a matrix and show

how certain matrices can be diagonalized in terms of eigenvalues and eigenvec-

tors. Once a matrix is diagonalized, then it can easily be raised to powers, finally

addressing the applications discussed at the beginning of Section 5.1.

Recall. A matrix is diagonal if all entries off the main diagonal are 0.

Note. In this section, the theorems stated are valid for matrices and vectors with

complex entries and complex scalars, unless stated otherwise.

Note. Throughout this section, the results hold for matrices with complex entries,

though our examples and exercises only involve real numbers. We will have to

delay some of the proofs until we deal with complex numbers in Chapter 9. One

result we should state is the Fundamental Theorem of Algebra.

Fundamental Theorem of Algebra. If p(x) = anx
n + an−1x

n−1 +

· · ·+a2x
2+a1x+a0 is an n-degree polynomial with either real or complex

coefficients, then p can be factored as p(x) = an(x−r1)(x−r2) · · · (x−rn)

where r1, r2, . . . , rn are the roots of p. The roots may not be distinct

and may be complex (even it the coefficients a0, a1, . . . , an are real).
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For n×n matrix A, the characteristic polynomial p(λ) = det(A−λI) is an n-degree

polynomial. So the Fundamental Theorem of Algebra guarantees that A has n (not

necessarily distinct) eigenvalues; though we need to allow complex eigenvalues for

this to be the case. Recall that the multiplicity of a root r of a polynomial, is the

number of times the factor (x− r) appears in the factorization of p(x) given in the

Fundamental Theorem of Algebra.

Note. The following theorem is fundamental in diagonalizing a matrix. Notice

that it is based on eigenvalues and eigenvectors of a matrix, giving motivation for

finding eigenvalues and eigenvectors.

Theorem 5.2. Matrix Summary of Eigenvalues of A.

Let A be an n × n matrix and let λ1, λ2, . . . , λn be (possibly complex) scalars and

~v1, ~v2, . . . , ~vn be nonzero vectors in n-space. Let C be the n × n matrix having ~vj

as jth column vector and let

D =

























λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

... . . . ...

0 0 0 · · · λn

























.

Then AC = CD if and only if λ1, λ2, . . . , λn are eigenvalues of A and ~vj is an

eigenvector of A corresponding to λj for j = 1, 2, . . . , n.
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Note. The n × n matrix C is invertible if and only if rank(C) = n by Theorem

2.6, “An Invertibility Criterion”; that is, if and only if the column vectors of C

form a basis of n-space. In this case, the criterion AC = CD in Theorem 5.2 can

be written as D = C−1AC. The equation D = C−1AC transforms a matrix A into

a diagonal matrix D that is much easier to raise to powers.

Definition 5.3. Diagonalizable Matrix.

An n×n matrix A is diagonalizable if there exists an invertible matrix C such that

C−1AC = D is a diagonal matrix. The matrix C is said to diagonalize the matrix

A.

Corollary 1. A Criterion for Diagonalization.

An n× n matrix A is diagonalizable if and only if n-space has a basis consisting of

eigenvectors of A.

Corollary 2. Computation of Ak.

Let an n × n matrix A have n eigenvectors and eigenvalues, giving rise to the ma-

trices C and D so that AC = CD, as described in Theorem 5.2. If the eigenvectors

are independent, then C is an invertible matrix and C−1AC = D. Under these

conditions, we have Ak = CDkC−1.

Example 5.2.A. Diagonalize A =





5 −3

−6 2



 and calculate Ak.
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Theorem 5.3. Independence of Eigenvectors.

Let A be an n × n matrix. If ~v1, ~v2, . . . , ~vn are eigenvectors of A corresponding to

distinct eigenvalues λ1, λ2, . . . , λn, respectively, the set {~v1, ~v2, . . . , ~vn} is linearly

independent and A is diagonalizable.

Example. Page 315 Number 6.

Definition 5.4. An n× n matrix P is similar to an n× n matrix Q if there exists

an invertible n × n matrix C such that C−1PC = Q.

Example. Page 315 Number 18.

Definition. The algebraic multiplicity of an eigenvalue λi of A is its multiplicity as

a root of the characteristic equation of A. Its geometric multiplicity is the dimension

of the eigenspace Eλi
.

Theorem 5.2.A. The geometric multiplicity of an eigenvalue of a matrix A is less

than or equal to its algebraic multiplicity.

Note. The proof of Theorem 5.2.A is an exercise (Number 33) in section 9.4.
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Theorem 5.4. A Criterion for Diagonalization.

An n×n matrix A is diagonalizable if and only if the algebraic multiplicity of each

(possibly complex) eigenvalue is equal to its geometric multiplicity.

Example. Page 315 Number 10. In this example, we have an eigenvalue of alge-

braic multiplicity 3 and geometric multiplicity 1.

Theorem 5.5. Diagonalization of Real Symmetric Matrices.

Every real symmetric matrix is real diagonalizable. That is, if A is an n × n

symmetric real matrix with real-number entries, then each eigenvalue of A is a real

number, and its algebraic multiplicity equals its geometric multiplicity.

Note. The proof of Theorem 5.5 is in Chapter 9. See the Corollary to Theorem

9.5, “Spectral Theorem for Hermitian Matrices.”

Examples. Page 316 Number 22, Page 316 Number 24, Page 316 Number 26.

Revised: 4/15/2019


