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Chapter 6. Orthogonality

6.4 The Projection Matrix

Note. In Section 6.1 (Projections), we projected a vector ~b ∈ R
n onto a subspace

W of R
n. We did so by finding a basis for W and a basis for the “perp space”

W⊥. We then found the coordinate vector of ~b with respect to these two bases

combined, and from this the projection of ~b onto W could be found. In Figure 6.8,

a projection of ~a+~b onto a subspace W is given schematically ( or we can interpret

this as a situation where we are in R
3 and W is a two dimensional subspace).

With the projection onto W represented as the function T , this figure suggests

that T (~a +~b) = T (~a) + T (~b). Figure 6.9 suggests that T (r~a) = rT (~a).

If these do in fact hold, then we would have that projection is a linear transfor-

mation and so (by Theorem 3.10) there would exist a matrix P such that the

projection of ~b onto W is given by P~b.
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Note. In this section, we show that the projection of any ~b onto W is of the form

P~b where P is a matrix independent of ~b. This will then show that projection onto

W is a linear transformation. We first need a preliminary theorem on rank.

Theorem 6.10. The Rank of (AT )A.

Let A be an m×n matrix of rank r. Then the n×n symmetric matrix (AT )A also

has rank r.

Note. Let W = sp(~a1,~a2, . . . , ~zk) be a subspace of R
n where ~a1,~a2, . . . ,~ak are

linearly independent (so {~a1,~a2, . . . ,~ak} is a basis for W , though maybe neither

an orthogonal nor orthonormal basis for W ). Let ~b ∈ R
n and let ~p = ~bW be the

projection of ~b onto W . Then ~b = ~p + (~b − ~p) −~bW +~bW⊥. By Theorem 6.1(4), ~p

is the unique vector such that:

1. the vector ~p lies in the subspace W , and

2. the vector ~b − ~p is perpendicular to every vector in W⊥ (or ~b − ~p ∈ W⊥).

Note. Let A be an n × k matrix with its columns as ~a1,~a2, . . . ,~ak. Then the

column space of A is W . Since ~p ∈ W then (by the “Column Space Criterion” of

Section 1.6, see page 92) there is column vector ~r ∈ R
k such that ~p = A~r. Since

~b − ~p = ~b − A~r is perpendicular to each vector in W , then (A~x) · (~b − A~r) = 0 for

any A~x ∈ W (where ~x ∈ R
k is any column vector). So

(A~x) · (~b − A~r) = (A~x)T (~b − A~r) = ~xTAT (~b − A~r) = ~xT (AT~b − ATA~r) = [0].

But this means that ~x · (AT~b − ATA~r) = 0 for any ~x ∈ R
k. Since AT~b − ATA~r ∈
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R
k, this implies that AT~b − ATA~r = ~0 ∈ R

k (this follows from Exercise 41(c) of

Section 1.3). Now k×k matrix ATA is invertible since A is invertible (by Theorem

1.12, since its columns are linearly independent), so rank(A) = k by Theorem

2.6 (“An Invertibility Criterion’) and by Theorem 6.10 (“The Rank of (AT )A”),

rank(ATA) = k and so, again by Theorem 2.6, ATA is invertible. So we have

AT~b − ATA~r = ~0 implies that ~r = (ATA)−1(AT~b). Since ~p = A~r = ~bW then

~bW = A(ATA)−1AT~b.

Note. We summarize the argument above as:

Projection ~bW of ~b onto the Subspace W

Let W = sp(~a1,~a2, . . . ,~ak) be a k-dimensional subspace of R
n and let matrix A

have as its columns the vectors ~a1,~a2, . . . ,~ak. The projection of ~b onto W is ~bW =

A(ATA)−1AT~b.

Definition. Let W = sp(~a1,~a2, . . . ,~ak) be a k-dimensional subspace of R
n and

let matrix A have as its columns the vectors ~a1,~a2, . . . ,~ak. The matrix P =

A(ATA)−1AT is the projection matrix for the subspace W .

Example. Page 363 Example 6.4.2.

Example. Page 368 number 6.
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Note. We see that the projection matrix P is computed in terms of matrix A

which is based on the basis for W . However, the choice of P is ultimately unique,

as the next theorem claims.

Theorem 6.11. Projection Matrix.

Let W be a subspace of R
n. There is a unique n × n matrix P such that, for

each column vector ~b ∈ R
n, the vector P~b is the projection of ~b onto W . The

projection matrix can be found by selecting any basis {~a1,~a2, . . . ,~ak} for W and

computing P = A(ATA)−1AT , where A is the n × k matrix having column vectors

~a1,~a2, . . . ,~ak.

Theorem 6.12. Characterization Projection Matrices.

The projection matrix P for a subspace W of R
n is both idempotent (that is,

P 2 = P ) and symmetric (that is, P = P T). Conversely, every n × n matrix that

is both idempotent and symmetric is a projection matrix (specifically, it is the

projection matrix for its column space).

Note. Since Theorem 6.12 says that (to paraphrase) “P is a projection matrix

if and only if P is idempotent and symmetric,” then we could take this as the

definition of a projection matrix. There may be setting out there where you see this

as the definition. Unfortunately, such a definition looses site of all the underlying

geometric properties which we have used here.
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Note. If we have an orthonormal basis for W , say {~a1,~a2, . . . ,~ak}, then Fraliegh

and Beauregard claim that ATA = I where I is the k × k identity. This follows

from the fact that the (ij)-entry of ATA is the ith row vector of AT dotted with the

jth column vector of A. But this is simply ~ai · ~aj. Since the basis is orthonormal,

~ai · ~aj =







0 if i 6= j

1 if i = j.
So ATA = I. Hence

P = A(ATA)−1AT − AIAT = AAT .

So the computation of P is simplified when we have an orthonormal basis for W .

Examples. Page 369 numbers 28 and 32.
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