Foundations of Probability and Statistics-Calculus Based

Chapter 2. Probability

2.1. Basic Ideas-Exercises and Proofs of Theorems

Table of contents

(1) Theorem 2.1.A
(2) Theorem 2.1.B

Theorem 2.1.A

Theorem 2.1.A. For any event A, we have $P\left(A^{c}\right)=1-P(A)$. Also $P(\varnothing)=0$.

Proof. Let \mathcal{S} be the sample space and let A be an event. Then A and A^{c} are mutually exclusive, so by Axiom 3, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)$. But $A \cup A^{c}=\mathcal{S}$, and be Axiom 1 we have $P(\mathcal{S})=1$. Therefore $P(A)+P\left(A^{c}\right)=P\left(A \cup A^{c}\right)=P(S)=1$, so that $P\left(A^{c}\right)=1-P(A)$, as claimed.

Theorem 2.1.A

Theorem 2.1.A. For any event A, we have $P\left(A^{c}\right)=1-P(A)$. Also $P(\varnothing)=0$.

Proof. Let \mathcal{S} be the sample space and let A be an event. Then A and A^{c} are mutually exclusive, so by Axiom 3, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)$. But $A \cup A^{c}=\mathcal{S}$, and be Axiom 1 we have $P(\mathcal{S})=1$. Therefore $P(A)+P\left(A^{c}\right)=P\left(A \cup A^{c}\right)=P(S)=1$, so that $P\left(A^{c}\right)=1-P(A)$, as claimed.

Next, $\varnothing=\mathcal{S}^{c}$, and so by the first result,

$$
P(\varnothing)=P\left(\mathcal{S}^{c}\right)=1-P(\mathcal{S})=1-1=0,
$$

Theorem 2.1.A

Theorem 2.1.A. For any event A, we have $P\left(A^{c}\right)=1-P(A)$. Also $P(\varnothing)=0$.

Proof. Let \mathcal{S} be the sample space and let A be an event. Then A and A^{c} are mutually exclusive, so by Axiom 3, $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)$. But $A \cup A^{c}=\mathcal{S}$, and be Axiom 1 we have $P(\mathcal{S})=1$. Therefore $P(A)+P\left(A^{c}\right)=P\left(A \cup A^{c}\right)=P(S)=1$, so that $P\left(A^{c}\right)=1-P(A)$, as claimed.

Next, $\varnothing=\mathcal{S}^{c}$, and so by the first result,

$$
P(\varnothing)=P\left(\mathcal{S}^{c}\right)=1-P(\mathcal{S})=1-1=0,
$$

as claimed.

Theorem 2.1.B

Theorem 2.1.B. Let A and B be any events. Then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Proof. First, we write A and B as a union of mutually exclusive events. We have $A \cup B=\left(A \cap B^{c}\right) \cup(A \cap B) \cup\left(A^{c} \cap B\right)$ (see the Venn diagram below).

Theorem 2.1.B

Theorem 2.1.B. Let A and B be any events. Then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Proof. First, we write A and B as a union of mutually exclusive events. We have $A \cup B=\left(A \cap B^{c}\right) \cup(A \cap B) \cup\left(A^{c} \cap B\right)$ (see the Venn diagram below).

By Axiom 3, $P(A \cup B)=P\left(A \cap B^{c}\right)+P(A \cap B)+P\left(A^{c} \cap B\right)$. Similarly, A and B can be written as mutually exclusive events, $A=\left(A \cap B^{c}\right) \cup(A \cap B)$ and $B=\left(A^{c} \cap B\right) \cup(A \cap B)$. Again by Axiom 3, $P(A)=P\left(A \cap B^{c}\right)+P(A \cap B)$ and $P(B)=P\left(A^{c} \cap B\right)+P(A \cap B)$.

Theorem 2.1.B

Theorem 2.1.B. Let A and B be any events. Then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Proof. First, we write A and B as a union of mutually exclusive events. We have $A \cup B=\left(A \cap B^{c}\right) \cup(A \cap B) \cup\left(A^{c} \cap B\right)$ (see the Venn diagram below).

By Axiom 3, $P(A \cup B)=P\left(A \cap B^{c}\right)+P(A \cap B)+P\left(A^{c} \cap B\right)$. Similarly, A and B can be written as mutually exclusive events, $A=\left(A \cap B^{c}\right) \cup(A \cap B)$ and $B=\left(A^{c} \cap B\right) \cup(A \cap B)$. Again by Axiom 3, $P(A)=P\left(A \cap B^{c}\right)+P(A \cap B)$ and $P(B)=P\left(A^{c} \cap B\right)+P(A \cap B)$.

Theorem 2.1.B (continued)

Theorem 2.1.B. Let A and B be any events. Then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Proof (continued). $\ldots P(A)=P\left(A \cap B^{c}\right)+P(A \cap B)$ and $P(B)=P\left(A^{c} \cap B\right)+P(A \cap B)$. Summing these we have

$$
\begin{aligned}
& P(A)+P(B)=P\left(A \cap B^{c}\right)+P\left(A^{c} \cap B\right)+2 P(A \cap B) \\
& =\left(P\left(A \cap B^{c}\right)+P(A \cap B)+P\left(A^{c} \cap B\right)\right)+P(A \cap B) .
\end{aligned}
$$

Since $P(A \cup B)=P\left(A \cap B^{c}\right)+P(A \cap B)+P\left(A^{c} \cap B\right)$ as shown above, then $P(A)+P(B)=P(A \cup B)+P(A \cap B)$, or

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B),
$$

Theorem 2.1.B (continued)

Theorem 2.1.B. Let A and B be any events. Then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Proof (continued). $\ldots P(A)=P\left(A \cap B^{c}\right)+P(A \cap B)$ and $P(B)=P\left(A^{c} \cap B\right)+P(A \cap B)$. Summing these we have

$$
\begin{aligned}
& P(A)+P(B)=P\left(A \cap B^{c}\right)+P\left(A^{c} \cap B\right)+2 P(A \cap B) \\
& =\left(P\left(A \cap B^{c}\right)+P(A \cap B)+P\left(A^{c} \cap B\right)\right)+P(A \cap B)
\end{aligned}
$$

Since $P(A \cup B)=P\left(A \cap B^{c}\right)+P(A \cap B)+P\left(A^{c} \cap B\right)$ as shown above, then $P(A)+P(B)=P(A \cup B)+P(A \cap B)$, or

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

as claimed.

