Chapter 15. Multiple Integrals
15.2. Double Integrals over General Regions—Examples and Proofs of Theorems
Exercise 15.2.20

Exercise 15.2.20. Sketch the region of integration and evaluate the double integral \(\int_0^\pi \int_0^{\sin x} y \, dy \, dx \).

Solution. The region is:
Exercise 15.2.20. Sketch the region of integration and evaluate the double integral \(\int_0^\pi \int_0^{\sin x} y \, dy \, dx \).

Solution. The region is:

We evaluate the iterated integral as:

\[
\int_0^\pi \int_0^{\sin x} y \, dy \, dx = \int_0^\pi \left. \frac{y^2}{2} \right|_{y=0}^{y=\sin x} dx = \int_0^\pi \frac{\sin^2 x}{2} \, dx
\]
Exercise 15.2.20. Sketch the region of integration and evaluate the double integral \(\int_0^\pi \int_0^{\sin x} y \, dy \, dx \).

Solution. The region is:

\[
\begin{aligned}
&\int_0^\pi \int_0^{\sin x} y \, dy \, dx = \int_0^\pi \left. \frac{y^2}{2} \right|_{y=\sin x} \, dx = \int_0^\pi \frac{\sin^2 x}{2} \, dx - 0 \, dx
\end{aligned}
\]
Exercise 15.2.20. Sketch the region of integration and evaluate the double integral \[\int_0^\pi \int_0^{\sin x} y \, dy \, dx. \]

Solution (continued).

\[= \int_0^\pi \frac{1}{2} \frac{1 - \cos 2x}{2} \, dx \quad \text{since} \quad \sin^2 x = \frac{1 - \cos 2x}{2} \]

\[= \frac{x}{4} - \frac{\sin 2x}{8} \bigg|_{x=0}^{x=\pi} = \left(\frac{\pi}{4} - \frac{\sin 2\pi}{8} \right) - (0) = \frac{\pi}{4}. \]
Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse:
\[\int_0^2 \int_0^{4-y^2} y \, dx \, dy. \]

Solution. We first have \(x \) ranging from 0 to \(4 - y^2 \), and second \(y \) ranges from 0 to 2. So the region is:
Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse:
\[\int_{\frac{4-y^2}{2}}^{2} \int_{0}^{4-y^2} y \, dx \, dy. \]

Solution. We first have \(x \) ranging from 0 to \(4-y^2 \), and second \(y \) ranges from 0 to 2. So the region is:

Now we can interpret that first \(y \) ranges from 0 to the curve \(x = 4-y^2 \) (or \(y = \sqrt{4-x} \), since \(y \geq 0 \) on the region) and second \(x \) ranges from 0 to 4. So the integral becomes
\[\int_{0}^{4} \int_{0}^{\sqrt{4-x}} y \, dy \, dx. \]
Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse:

$$\int_0^2 \int_0^{4-y^2} y \, dx \, dy.$$

Solution. We first have x ranging from 0 to $4 - y^2$, and second y ranges from 0 to 2. So the region is:

Now we can interpret that first y ranges from 0 to the curve $x = 4 - y^2$ (or $y = \sqrt{4-x}$, since $y \geq 0$ on the region) and second x ranges from 0 to 4. So the integral becomes

$$\int_0^4 \int_0^{\sqrt{4-x}} y \, dy \, dx.$$
Exercise 15.2.50

Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

\[
\int_{0}^{2} \int_{0}^{4-x^2} \frac{xe^{2y}}{4-y} \, dy \, dx.
\]

Solution. We first have \(y \) ranging from 0 to \(4-x^2 \), and second \(x \) ranges from 0 to 2. So the region is:
Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

\[\int_0^2 \int_0^{4-x^2} \frac{xe^{2y}}{4-y} \, dy \, dx. \]

Solution. We first have \(y \) ranging from 0 to \(4 - x^2 \), and second \(x \) ranges from 0 to 2. So the region is:

Now we can interpret that first \(x \) ranges from 0 to the curve \(y = 4 - x^2 \) (or \(x = \sqrt{4 - y} \), since \(x \geq 0 \) on the region) and second \(y \) ranges from 0 to 4. So the integral becomes

\[\int_0^4 \int_0^{\sqrt{4-y}} \frac{xe^{2y}}{4-y} \, dx \, dy. \]
Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

$$
\int_0^2 \int_0^{4-x^2} \frac{xe^{2y}}{4-y} \, dy \, dx.
$$

Solution. We first have y ranging from 0 to $4 - x^2$, and second x ranges from 0 to 2. So the region is:

Now we can interpret that first x ranges from 0 to the curve $y = 4 - x^2$ (or $x = \sqrt{4 - y}$, since $x \geq 0$ on the region) and second y ranges from 0 to 4. So the integral becomes

$$
\int_0^4 \int_0^{\sqrt{4-y}} \frac{xe^{2y}}{4-y} \, dx \, dy.
$$
Exercise 15.2.50 (continued)

Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

\[\int_0^2 \int_0^{4-x^2} \frac{xe^{2y}}{4-y} \, dy \, dx. \]

Solution (continued). We now evaluate the new iterated integral:

\[\int_0^4 \int_0^{\sqrt{4-y}} \frac{xe^{2y}}{4-y} \, dx \, dy = \int_0^4 \frac{x^2 e^{2y}}{2(4-y)} \bigg|_{x=0}^{x=\sqrt{4-y}} \, dy \]

\[= \int_0^4 \frac{(\sqrt{4-y})^2 e^{2y}}{2(4-y)} - 0 \, dy = \int_0^4 \frac{(4-y)e^{2y}}{2(4-y)} \, dy = \int_0^4 \frac{e^{2y}}{2} \, dy \]

\[= \frac{e^{2y}}{4} \bigg|_{y=0}^{y=4} = \frac{e^{2(4)}}{4} - \frac{e^{2(0)}}{4} = \frac{e^8 - 1}{4}. \]
Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder \(z = x^2 \) and below by the region enclosed by the parabola \(y = 2 - x^2 \) and the line \(y = x \) in the xy-plane.

Solution. The region \(R \) is:
Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder $z = x^2$ and below by the region enclosed by the parabola $y = 2 - x^2$ and the line $y = x$ in the xy-plane.

Solution. The region R is:

First y ranges from x to $2 - x^2$, and second x ranges from -2 to 1. Since $z = f(x, y) = x^2$ is nonnegative over R then the desired volume is

$$V = \int_{-2}^{1} \int_{x}^{\sqrt{2-x^2}} x^2 \, dy \, dx.$$
Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder \(z = x^2 \) and below by the region enclosed by the parabola \(y = 2 - x^2 \) and the line \(y = x \) in the \(xy \)-plane.

Solution. The region \(R \) is:

First \(y \) ranges from \(x \) to \(2 - x^2 \), and second \(x \) ranges from \(-2 \) to \(1 \).

Since \(z = f(x, y) = x^2 \) is nonnegative over \(R \) then the desired volume is

\[
V = \int_{-2}^{1} \int_{x}^{\sqrt{2-x^2}} x^2 \, dy \, dx.
\]
Solution (continued). So the volume is

\[
V = \int_{-2}^{1} \int_{y}^{\sqrt{2-x^2}} x^2 \, dy \, dx = \int_{-2}^{1} x^2 y \bigg|_{y=x^2} dx
\]

\[
= \int_{-2}^{1} x^2 (2-x^2) - x^2(x) \, dx = \int_{-2}^{1} 2x^2 - x^4 - x^3 \, dx = \frac{2x^3}{3} - \frac{x^5}{5} - \frac{x^4}{4} \bigg|_{x=-2}^{x=1}
\]

\[
= \left(\frac{2(1)^3}{3} - \frac{(1)^5}{5} - \frac{(1)^4}{4} \right) - \left(\frac{2(-2)^3}{3} - \frac{(-2)^5}{5} - \frac{(-2)^4}{4} \right)
\]

\[
= \frac{2}{3} - \frac{1}{5} - \frac{1}{4} + \frac{16}{3} - \frac{32}{5} + 4 = \frac{40}{60} - \frac{12}{60} - \frac{15}{60} + \frac{320}{60} - \frac{384}{60} + \frac{240}{60} = \frac{189}{60} = \frac{63}{20}.
\]
Exercise 15.2.76

Exercise 15.2.76. (Unbounded Region) Integrate

\[f(x, y) = \frac{1}{(x^2 - x)(y - 1)^{2/3}} \]

over the infinite rectangle \(2 \leq x < \infty, \ 0 \leq y \leq 2 \).

Solution. We want to find

\[\int_{2}^{\infty} \int_{0}^{2} \frac{1}{(x^2 - x)(y - 1)^{2/3}} \, dy \, dx. \]

This is an improper integral and so we write it as a limit:

\[\int_{2}^{\infty} \int_{0}^{2} \frac{1}{(x^2 - x)(y - 1)^{2/3}} \, dy \, dx = \lim_{b \to \infty} \int_{2}^{b} \int_{0}^{2} \frac{1}{(x^2 - x)(y - 1)^{2/3}} \, dy \, dx \]

\[= \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x^2 - x} \left((y - 1)^{1/3} \right)_{y=0}^{y=2} \, dx \]

\[= \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x^2 - x} \left(3((2) - 1)^{1/3} - \frac{1}{x^2 - x} 3((0) - 1)^{1/3} \right) dx \]
Exercise 15.2.76

Exercise 15.2.76. (Unbounded Region) Integrate
\[f(x, y) = \frac{1}{(x^2 - x)(y - 1)^{2/3}} \] over the infinite rectangle \(2 \leq x < \infty, 0 \leq y \leq 2 \).

Solution. We want to find
\[\int_2^\infty \int_0^2 \frac{1}{(x^2 - x)(y - 1)^{2/3}} \, dy \, dx. \] This is an improper integral and so we write it as a limit:

\[\int_2^\infty \int_0^2 \frac{1}{(x^2 - x)(y - 1)^{2/3}} \, dy \, dx = \lim_{b \to \infty} \int_2^b \int_0^2 \frac{1}{(x^2 - x)(y - 1)^{2/3}} \, dy \, dx \]

\[= \lim_{b \to \infty} \int_2^b \frac{1}{x^2 - x} \, \frac{(y - 1)^{1/3}}{1/3} \bigg|_{y=0}^{y=2} \, dx \]

\[= \lim_{b \to \infty} \int_2^b \frac{1}{x^2 - x} \left(3((2) - 1)^{1/3} - \frac{1}{x^2 - x} \right) 3((0) - 1)^{1/3} \, dx \]
Exercise 15.2.76. (Unbounded Region) Integrate
\[f(x, y) = \frac{1}{(x^2 - x)(y - 1)^{2/3}} \]
over the infinite rectangle \(2 \leq x < \infty \), \(0 \leq y \leq 2 \).

Solution (continued).

\[
\begin{align*}
&= \lim_{b \to \infty} \int_{2}^{b} \frac{6}{x^2 - x} \, dx = 6 \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x - 1} - \frac{1}{x} \, dx \text{ by partial fractions} \\
&= 6 \lim_{b \to \infty} \left(\ln(x - 1) - \ln x \right) \bigg|_{x=2}^{x=b} = 6 \lim_{b \to \infty} \ln \left(\frac{x - 1}{x} \right) \bigg|_{x=2}^{x=b} \\
&= 6 \lim_{b \to \infty} \ln \left(\frac{b - 1}{b} \right) - 6 \ln \left(\frac{2 - 1}{2} \right) = -6 \ln(1/2) = 6 \ln 2.
\end{align*}
\]