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Chapter 13. Vector-Valued Functions and

Motion in Space

13.6. Velocity and Acceleration in Polar

Coordinates

Definition. When a particle P (r, θ) moves along a curve in the polar

coordinate plane, we express its position, velocity, and acceleration in

terms of the moving unit vectors

ur = (cos θ)i + (sin θ)j, uθ = −(sin θ)i + (cos θ)j.

The vector ur points along the position vector ~OP , so r = rur. The

vector uθ, orthogonal to ur, points in the direction of increasing θ.

Figure 13.30, page 757
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Note. We find from the above equations that

dur

dθ
= −(sin θ)i + (cos θ)j = uθ

duθ

dθ
= −(cos θ)i− (sin θ)j = −ur.

Differentiating ur and uθ with respect to time t (and indicating derivatives

with respect to time with dots, as physicists do), the Chain Rule gives

u̇r =
dur

dθ
θ̇ = θ̇uθ, u̇θ =

duθ

dθ
θ̇ = −θ̇ur.

Note. With r as a position function, we can express velocity v = ṙ as:

v =
d

dt
[rur] = ṙur + ru̇r = ṙur + rθ̇uθ.

This is illustrated in the figure below.

Figure 13.31, page 758
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Note. We can express acceleration a = v̇ as

a = (r̈ur + ṙur) + (ṙθ̇uθ + rθ̈uθ + rθ̇u̇θ)

= (r̈ − rθ̇2)ur + (rθ̈ + 2ṙθ̇)uθ.

Example. Page 760, number 4.

Definition. We introduce cylindrical coordinates by extending polar

coordinates with the addition of a third axis, the z-axis, in a 3-dimensional

right-hand coordinate system. The vector k is introduced as the direction

vector of the z-axis.

Note. The position vector in cylindrical coordinates becomes r = rur +

zk. Therefore we have velocity and acceleration as:

v = ṙur + rθ̇uθ + żk

a = (r̈ − rθ̇2)ur + (rθ̈ + 2ṙθ̇)uθ + z̈k.

The vectors ur, uθ, and k make a right-hand coordinate system where

ur × uθ = k, uθ × k = ur, k × ur = uθ.
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Figure 13.32, page 758

“Theorem.” Newton’s Law of Gravitation.

If r is the position vector of an object of mass m and a second mass of size

M is at the origin of the coordinate system, then a (gravitational) force

is exerted on mass m of

F = −GmM

|r|2
r

|r|.

The constant G is called the universal gravitational constant and (in

terms of kilograms, Newtons, and meters) is 6.6726 × 10−11 Nm2kg−2.
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Note. Newton’s Second Law of Motion states that “force equals mass

times acceleration” or, in the symbols above, F = mr̈. Combining this

with Newton’s Law of Gravitation, we get

mr̈ = −GmM

|r|2
r

|r|,

or

r̈ = −GM

|r|2
r

|r|.

Figure 13.33, page 758

Note. Notice that r̈ is a parallel (or, if you like, antiparallel) to r, so

r × r̈ = 0. This implies that

d

dt
[r × ṙ] = ṙ × ṙ + r × r̈ = 0 + r × r̈ = r × r̈ = 0.

So r× ṙ must be a constant vector, say r× ṙ = C. Notice that if C = 0,

then r and ṙ must be (anti)parallel and the motion of mass m must be in
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a line passing through mass M . This represents the case where mass m

simply falls towards mass M and does not represent orbital motion, so we

now assume C 6= 0.

Lemma. If a mass M is stationary and mass m moves according to

Newton’s Law of Gravitation, then mass m will have motion which is

restricted to a plane.

Proof. Since r × ṙ = C, or more explicitly, r(t) × ṙ(t) = C where C is

a constant, then we see that the position vector r is always orthogonal to

vector C. Therefore r (in standard position) lies in a plane with C as its

normal vector, and mass m is in this plane for all values of t. Q.E.D.

Figure 13.34, page 759
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“Theorem.” Kepler’s First Law of Planetary Motion.

Suppose a mass M is located at the origin of a coordinate system. Let

mass m move under the influence of Newton’s Law of Gravitation. Then

m travels in a conic section with M at a focus of the conic.

Note. Kepler would think of mass M as the sun and mass m as one

of the planets (each planet has an elliptical orbit). We can also think of

mass m as an asteroid or comet in orbit about the sun (comets can have

elliptic, parabolic, or hyperbolic orbits). It is also reasonable to think of

mass M as the Earth and mass m as an object such as a satellite orbiting

the Earth.

Proof of Kepler’s First Law. The computations in this proof are

based on work from Celestial Mechanics by Harry Pollard (The Carus

Mathematical Monographs, Number 18, Mathematical Association of

America, 1976). Let r(t) = r be the position vector of mass m and

let r(t) = |r(t)|, or in shorthand notation r = |r|. Then

d

dt







r

|r|





 =
d

dt

[r

r

]

=
rṙ− ṙr

r2

where the dots represents derivatives with respect to time t,

=
r2ṙ − rṙr

r3
=

(r · r)ṙ − (r · ṙ)r
r3
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since
d

dt
[r2] = 2rṙ by the Chain rule and

d

dt
[r2] =

d

dt
[r · r] = 2r · ṙ, we

have rṙ = r · ṙ,

=
(r × ṙ) × r

r3

since, in general, (u×v)×w = (u ·w)v−(v ·w)u (see page 723, number

17).

That is,
d

dt

[r

r

]

=
(r × ṙ) × r

r3
=

C × r

r3
, or, multiplying both sides by

−Gm,

−GM
d

dt

[r

r

]

= C×




−GM

r3
r





or

GM
d

dt

[r

r

]

= C×




GM

r3
r



 . (∗)

From Newton’s Law of Gravitation and Newton’s Second Law of Motion,

we have r̈ =
−GM

|r|2
r

|r| =





−GM

r3



 r, and so (∗) becomes

GM
d

dt

[r

r

]

= C× (−r̈) = r̈ × C. (∗∗)

Integrate both sides of (∗∗) and add a constant vector of integration e to

get

GM
(r

r
+ e

)

= ṙ × C (∗ ∗ ∗)

(remember C is constant). Dotting both sides of (∗ ∗ ∗) with r gives

GM
(

r · r
r

+ r · e
)

= (ṙ × C) · r
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or

GM







|r|2
r

+ r · e




 = (r × ṙ) · C

by a property of the triple scalar product (see page 704), or

GM(r + r · e) = C · C = C2

where C = |C|, or

r + r · e =
C2

GM
. (∗ ∗ ∗∗)

As commented above, if C = 0 then we have motion along a line towards

mass M at the origin, so we assume C 6= 0. Finally, we interpret e = |e|.

First, suppose e = 0. Then r = C2/(GM) (a constant) and so the motion

is circular about central mass M . Recall that a circle is a conic section of

eccentricity 0. Second, suppose e 6= 0. From (∗∗∗), GM
(r

r
+ e

)

= ṙ×C

where C = r × ṙ. By properties of the cross product,
r

r
+ e and r are

both orthogonal to C. Therefore r ·C = 0 and

(r

r
+ e

)

·C =
1

r
(r · C) + e · C = 0 + e ·C = e · C = 0.

So e is orthogonal to C. Since C is orthogonal to the plane of motion, then

e lies in the plane of motion (when put in standard position). Introduce

vector e in the plane of motion (say the xy-plane) and let α be the angle

between the positive x-axis and e. Let r(t) be in standard position and
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represent the head of r(t) as P (r, β) in polar coordinates r and β. Define

θ as β − α:

The relationship between r, e, α, β, and θ.

Then r · e = re cos θ. So equation (∗ ∗ ∗∗) gives

r + r · e =
C2

GM
or r + re cos θ =

C2

GM
or r =

C2/(GM)

1 + e cos θ
.

This is a conic section of eccentricity e in polar coordinates (r, θ) (see

page 668). Notice that r is a minimum when the denominator is largest.

This occurs when θ = 0 and gives r0 =
C2/(GM)

1 + e
. We can solve for C2

to get C2 = GM(1 + e)r0. Therefore the motion is described in terms

of e and r0 as r =
(1 + e)r0

1 + e cos θ
. For (noncircular) orbits about the sun,

r0 is called the perihelion distance (if the Earth is the central mass, r0

is the perigee distance). In conclusion, the motion of mass m is a conic

section of eccentricity e and is described in polar coordinates (r, θ) as

r =
(1 + e)r0

1 + e cos θ
. Q.E.D.
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Theorem. Kepler’s Second Law of Planetary Motion.

Suppose a mass M is located at the origin of a coordinate system and

that mass m move according to Kepler’s First Law of Planetary Motion.

Then the radius vector from mass M to mass m sweeps out equal areas

in equal times.

Figure 13.35, page 759

Note. If we know the orbit of an object (that is, if we know the conic

section from Kepler’s First Law which describes the objects position), then

Kepler’s Second Law allows us to find the location of the object at any

given time (assuming we have some initial position from which time is

measured).
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Proof of Kepler’s Second Law. In Lemma we have seen that the

vector r(t) × ṙ(t) = C is a constant. If we express the position vector

in polar coordinates, we get r(t) = r = (r cos θ)i + (r sin θ)j. Therefore

ṙ(t) = (ṙ cos θ − rθ̇ sin θ)i + (ṙ sin θ + rθ̇ cos θ)j. We also know that

C = Ck. So the equation r(t) × ṙ(t) = C yields

r(t) × ṙ(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

r cos θ r sin θ 0

ṙ cos θ − rθ̇ sin θ ṙ sin θ + rθ̇ cos θ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
{

(r cos θ(ṙ sin θ + rθ̇ cos θ)) − r sin θ(ṙ cos θ − rθ̇ sin θ)
}

k

= (rṙ cos θ sin θ + r2θ̇ cos2 θ − rṙ sin θ cos θ + r2θ̇ sin2 θ)k

= (r2θ̇)k = Ck.

Now in polar coordinates, area is calculated as A =
∫

b

a

1

2
r2(θ)dθ and so

the derivative of area with respect to time is (by the Chain Rule and the

Fundamental Theorem of Calculus Part I)
dA

dt
=

dA

dθ

dθ

dt
=

1

2
r2(θ)θ̇ =

1

2
r2θ̇. Therefore

dA

dt
=

1

2
r2θ̇ =

1

2
C where C is constant. Hence the rate

of change of time is constant and the radius vector sweeps out equal areas

in equal times. Q.E.D.
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Theorem. Kepler’s Third Law of Planetary Motion.

Suppose a mass M is located at the origin of a coordinate system and that

mass m move according to Kepler’s First Law of Planetary Motion and

that the orbit is a circle or ellipse. Let T be the time it takes for mass m

to compete one orbit of mass M and let a be the semimajor axis of the

elliptical orbit (or the radius of the circular orbit). Then,
T 2

a3
=

4π2

GM
.

Note. Kepler’s Third Law allows us to find a relationship between the

orbital period T of a planet and the size of the planet’s orbit. For example,

the semimajor axis of the orbit of Mercury is 0.39 AU and the orbital

period of Mercury is 88 days. The semimajor axis of the orbit of the

Earth is 1 AU and the orbital period is 365.25 days. The semimajor axis

of Neptune is 30.06 AU and the orbital period is 60,190 days (165 Earth

years).

Proof of Kepler’s Third Law. The area of the ellipse which describes

the orbit is

A =
∫

T

0





dA

dt



 dt =
∫

T

0

1

2
C dt =

1

2
CT

since dA/dt = 1
2
C from the proof of Kepler’s Second Law. The area of an

ellipse with semimajor axis of length a and semiminor axis of length b is
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πab. Therefore
1

2
CT = πab = πa2

√
1 − e2

since from page 666 e =
a2 − b2

a
or e2a2 = a2 − b2 or b2 = a2(1 − e2) or

b = a
√

1 − e2. Therefore

C2T 2

4
= π2a4(1 − e2)

or
T 2

a3
=

4π2(1 − e2)a

C2
. (∗)

Now the maximum value of r, denoted rmax, occurs when θ = π: rmax =
(1 + e)r0

1 + e cos θ

∣

∣

∣

∣

∣

∣

∣

θ=π

=
r0(1 + e)

1 − e
. Since 2a = r0 + rmax, then

a =
r0 + r0(1+e)

1−e

2
=

r0(1 − e) + r0(1 + e)

2(1 − e)
=

r0

1 − e
.

Figure 13.36, page 760
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Substituting this value of a into (∗) give

T 2

a3
=

4π2(1 − e2)

C2

r0

1 − e
=

4π2(1 − e2)

GM(1 + e)r0

r0

1 − e

since C2 = GM(1 + e)r0 from the proof of Kepler’s First Law. Therefore
T 2

a3
=

4π2

GM
. Q.E.D.

A Historical Note. Claudius Ptolemy (90 ce–168 ce) presented a

model of the universe which was widely accepted for almost 1400 years.

In his Almagest he proposed that the universe had the Earth in the center

with the planets Mercury, Venus, Mars, Jupiter, and Saturn, along with

the sun and moon, orbiting around the Earth once every day in circular

orbits. In addition, the stars were located on a sphere which rotated

once a day. His model was quite complicated and required a number of

“epicycles” which were additional circles needed to explain the complicated

observed motion of the planets (in particular, the occasional retrograde

movement seen in the motion of the superior planets Mars, Jupiter, and

Saturn). Some of these ideas were inherited from Ptolemy’s predecessors

such as Hipparchus and Apollonius of Perga (both living around 200 bce).

Surprisingly, another ancient Greek astronomer which predates each of

these, Aristarchus of Samos (310 bce–230 bce), proposed that the Sun

is the center of the universe and that the Earth is a planet orbiting the
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sun, just like each of the other five planets. However, Ptolemy’s model

was much more widely accepted and adopted by the Christian church.

Polish astronomer Nicolaus Copernicus (1473–1543) proposed again

that the sun is the center of the universe and that the planets move in

perfect circles around the sun with the sun at the center of the circles.

His ideas were published shortly before his death in De revolutionibus

orbium coelestium (On the Revolutions of the Celestial Spheres). The

Copernican system became synonymous with heliocentrism. Coperni-

cus’s model was meant to simplify the complicated model of Ptolemy, yet

its predictive power was not as strong as that of Ptolemy’s model (due to

the fact that Copernicus insisted on circular orbits).

Johannes Kepler (1571–1630) used extremely accurate observational

data of planetary positions (he used the data of Tycho Brahe which was

entirely based on naked eye observations) to discover his laws of planetary

motion. After years of trying, he used data, primarily that of the position

of Mars, to fit an ellipse to the data. In 1609 he published his first two

laws in Astronomia nova (A New Astronomy). However, Kepler’s work

was not based on any particular theoretical framework, but only on the

observations. It would require another to actually explain the motion of

the planets.
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Isaac Newton (1643–1727) invented calculus in 1665 and 1666, but failed

to publish it at the time (which lead to years of controversy with Gottfried

Leibniz). In 1684, Edmund Halley (of the comet fame) asked Newton what

type of path an object would follow under an inverse-square law of attrac-

tion (of gravity). Newton immediately replied the shape was an ellipse

and that he had worked it out years before (but not published it). Halley

was so impressed, he convinced Newton to write up his ideas and Newton

published Principia Mathematica in 1687 (with Halley covering the ex-

pense of publication). This book was the invention of classical physics and

is sometimes called the greatest scientific book of all time! Newton’s proof

of Kepler’s laws from his inverse-square law of gravitation is certainly one

of the greatest accomplishments of classical physics and Newton’s tech-

niques (which we have seen in this section) ruled physics until the time of

Albert Einstein (1879–1955)!


