Chapter 15. Multiple Integrals

15.2. Double Integrals over General Regions

Note. Let R be a non-rectangular region in the plane. A partition of R is formed in a manner similar to rectangular regions, but we now only take rectangles which lie entirely inside region R (see Figure 15.8 below). As before, we number the rectangles and let ΔA_k be the area of the kth rectangle. Choose a point (x_k, y_k) in the kth rectangle and compute a Riemann sum as

$$S_n = \sum_{k=1}^{n} f(x_k, y_k) \Delta A_k.$$

Again, we define the double integral of $f(x, y)$ over R as

$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} f(x_k, y_k) \Delta A_k = \int \int_{R} f(x, y) \, dA.$$
Definition. When $f(x, y)$ is a positive function over a region R in the xy-plane, we define the volume bounded below by R and above by the surface $z = f(x, y)$ to be the double integral of f over R.

Theorem 2. Fubini’s Theorem (Stronger Form)

Let $f(x, y)$ be continuous on a region R.

1. If R is defined by $x \in [a, b]$, $g_1(x) \leq y \leq g_2(x)$, with g_1 and g_2 continuous on $[a, b]$, then

$$
\int \int_R f(x, y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx.
$$
2. If \(R \) is defined by \(y \in [c, d] \), \(h_1(y) \leq x \leq h_2(y) \), with \(h_1 \) and \(h_2 \) continuous on \([c, d]\), then

\[
\int \int_R f(x, y) \, dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \, dy.
\]

Figures 15.10 and 15.11, Pages 860 and 861

Example. Page 866, number 20.

Note. Using Vertical Cross-Sections.

When faced with evaluating \(\int \int_R f(x, y) \, dA \), integrating first with respect to \(y \) and then with respect to \(x \), do the following three steps:

1. **Sketch.** Sketch the region of integration and label the bounding curves.
2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the direction of increasing y. Mark the y-values where L enters and leaves. These are the y-limits of integration and are usually functions of x (instead of constants).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines through R. The integral shown below is

$$
\int \int_R f(x, y) \, dA = \int_{x=0}^{x=1} \int_{y=1-x}^{y=\sqrt{1-x^2}} f(x, y) \, dy \, dx.
$$

Using Horizontal Cross-Sections.

To evaluate the same double integral as an iterated integral with the order of integration reversed, use horizontal lines instead of vertical lines in Steps 2 and 3. The integral below is

$$
\int \int_R f(x, y) \, dA = \int_{y=0}^{y=1} \int_{x=1-y}^{x=\sqrt{1-y^2}} f(x, y) \, dx \, dy.
$$

Figures 15.14 and 15.15, Page 863
Examples. Page 866, numbers 40 and 50.

If \(f(x, y) \) and \(g(x, y) \) are continuous on the bounded region \(R \), then the following properties hold.

1. **Constant Multiple:** \(\int \int_{R} cf(x, y) \, dA = c \int \int_{R} f(x, y) \, dA \) for any constant \(c \)

2. **Sum and Difference:** \(\int \int_{R} (f(x, y) \pm g(x, y)) \, dA = \int \int_{A} f(x, y) \, dA \pm \int \int_{R} g(x, y) \, dA \)

3. **Domination:**

 (a) \(\int \int_{R} f(x, y) \, dA \geq 0 \) if \(f(x, y) \geq 0 \) on \(R \)

 (b) \(\int \int_{R} f(x, y) \, dA \geq \int \int_{R} g(x, y) \, dA \) if \(f(x, y) \geq g(x, y) \) on \(R \)

4. **Additivity:** \(\int \int_{R} f(x, y) \, dA = \int \int_{R_1} f(x, y) \, dA + \int \int_{R_2} f(x, y) \, dA \)
 if \(R \) is the union of two non-overlapping regions \(R_1 \) and \(R_2 \)

Examples. Page 866, number 58 and Page 867, number 76.