Calculus 3

Chapter 15. Multiple Integrals

15.1. Double and Iterated Integrals over Rectangles-Examples and Proofs of Theorems

Table of contents

(1) Exercise 15.1.6
(2) Exercise 15.1.16
(3) Exercise 15.1.28

Exercise 15.1.6

Exercise 15.1.6. Evaluate the double integral $\int_{0}^{3} \int_{-2}^{0}\left(x^{2} y-2 x y\right) d y d x$.
Solution. We evaluate this iterated integral by first integrating with respect to y and then with respect to x. So, by the Fundamental Theorem of Calculus (Part 2) we have:

$$
\begin{gathered}
\int_{0}^{3} \int_{-2}^{0}\left(x^{2} y-2 x y\right) d y d x=\left.\int_{0}^{3}\left(x^{2} \frac{y^{2}}{2}-2 x \frac{y^{2}}{2}\right)\right|_{y=-2} ^{y=0} d x \\
=\left.\int_{0}^{3}\left(x^{2} y^{2} / 2-x y^{2}\right)\right|_{y=-2} ^{y=0} d x=\int_{0}^{3} 0-\left(x^{2}(-2)^{2} / 2-x(-2)^{2}\right) d x \\
=\int_{0}^{3}-2 x^{2}+4 x d x=\left.\left(-2 \frac{x^{3}}{3}+4 \frac{x^{2}}{2}\right)\right|_{x=0} ^{x=3} \\
=\left(-2(3)^{3} / 3+4(3)^{2} / 2\right)-(0)=-18+18=0 .
\end{gathered}
$$

Exercise 15.1.6

Exercise 15.1.6. Evaluate the double integral $\int_{0}^{3} \int_{-2}^{0}\left(x^{2} y-2 x y\right) d y d x$.
Solution. We evaluate this iterated integral by first integrating with respect to y and then with respect to x. So, by the Fundamental Theorem of Calculus (Part 2) we have:

$$
\begin{gathered}
\int_{0}^{3} \int_{-2}^{0}\left(x^{2} y-2 x y\right) d y d x=\left.\int_{0}^{3}\left(x^{2} \frac{y^{2}}{2}-2 x \frac{y^{2}}{2}\right)\right|_{y=-2} ^{y=0} d x \\
=\int_{0}^{3}\left(x^{2} y^{2} / 2-x y^{2}\right) \mid y=0 \\
y=-2 d x=\int_{0}^{3} 0-\left(x^{2}(-2)^{2} / 2-x(-2)^{2}\right) d x \\
=\int_{0}^{3}-2 x^{2}+4 x d x=\left.\left(-2 \frac{x^{3}}{3}+4 \frac{x^{2}}{2}\right)\right|_{x=0} ^{x=3} \\
=\left(-2(3)^{3} / 3+4(3)^{2} / 2\right)-(0)=-18+18=0 .
\end{gathered}
$$

Exercise 15.1.16

Exercise 15.1.16. Evaluate the double integral over the region R :

$$
\iint_{R} y \sin (x+y) d A \text { where } R=\{(x, y) \mid-\pi \leq x \leq 0,0 \leq y \leq \pi\} .
$$

Solution. By Fubini's Theorem, First Form (Theorem 1), the integral can

 be written as an iterated integrals as follows:$\iint_{R} y \sin (x+y) d A=\int_{-\pi}^{0} \int_{0}^{\pi} y \sin (x+y) d y d x=\int_{0}^{\pi} \int_{-\pi}^{0} y \sin (x+y) d x d y$.

Exercise 15.1.16

Exercise 15.1.16. Evaluate the double integral over the region R :

$$
\iint_{R} y \sin (x+y) d A \text { where } R=\{(x, y) \mid-\pi \leq x \leq 0,0 \leq y \leq \pi\} .
$$

Solution. By Fubini's Theorem, First Form (Theorem 1), the integral can be written as an iterated integrals as follows:
$\iint_{R} y \sin (x+y) d A=\int_{-\pi}^{0} \int_{0}^{\pi} y \sin (x+y) d y d x=\int_{0}^{\pi} \int_{-\pi}^{0} y \sin (x+y) d x d y$.
We choose to integrate with respect to x first:

$$
\iint_{R} y \sin (x+y) d A=\int_{0}^{\pi} \int_{-\pi}^{0} y \sin (x+y) d x d y
$$

$=\int_{0}^{\pi}-\left.y \cos (x+y)\right|_{x=-\pi} ^{x=0} d y=\int_{0}^{\pi}-y \cos (0+y)-(-y \cos (\pi+y)) d y$

Exercise 15.1.16

Exercise 15.1.16. Evaluate the double integral over the region R :

$$
\iint_{R} y \sin (x+y) d A \text { where } R=\{(x, y) \mid-\pi \leq x \leq 0,0 \leq y \leq \pi\} .
$$

Solution. By Fubini's Theorem, First Form (Theorem 1), the integral can be written as an iterated integrals as follows:
$\iint_{R} y \sin (x+y) d A=\int_{-\pi}^{0} \int_{0}^{\pi} y \sin (x+y) d y d x=\int_{0}^{\pi} \int_{-\pi}^{0} y \sin (x+y) d x d y$.
We choose to integrate with respect to x first:

$$
\begin{aligned}
& \iint_{R} y \sin (x+y) d A=\int_{0}^{\pi} \int_{-\pi}^{0} y \sin (x+y) d x d y \\
&=\int_{0}^{\pi}-\left.y \cos (x+y)\right|_{x=-\pi} ^{x=0} d y=\int_{0}^{\pi}-y \cos (0+y)-(-y \cos (\pi+y)) d y
\end{aligned}
$$

Exercise 15.1.16 (continued)

Solution (continued).

$$
\begin{aligned}
= & \int_{0}^{\pi}-y \cos y+y(-\cos y) \text { since } \cos (\pi+y)=-\cos (-y) \text { for all } y \\
= & \int_{0}^{\pi}-2 y \cos y d y \text { now let } u=y \text { and } d v=\cos y d y, \\
& \text { so that } d u=d y \text { and } v=\sin y \\
= & -\left.2\left(y \sin y-\int \sin y d y\right)\right|_{y=0} ^{y=\pi} \text { by integration by parts } \\
= & -\left.2(y \sin y-(-\cos y))\right|_{y=0} ^{y=\pi}=-2(\pi \sin \pi+\cos \pi)+2(0+\cos 0) \\
= & -2(0+(-1))+2(1)=4 .
\end{aligned}
$$

Exercise 15.1.28

Exercise 15.1.28. Find the volume of the region bounded above by the surface $z=4-y^{2}$ and below by the rectangle
$R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2\}$.
Solution. First, notice that $z=f(x, y)=2-y^{2}$ is nonnegative over R since $0 \leq y \leq 2$ for $(x, y) \in R$. So by the definition of volume and by Fubini's Theorem, First Form (Theorem 1), we have

$$
V=\iint_{R} f(x, y) d A=\int_{0}^{1} \int_{0}^{2} 4-y^{2} d y d x=\int_{0}^{2} \int_{0}^{1} 4-y^{2} d x d y
$$

Exercise 15.1.28

Exercise 15.1.28. Find the volume of the region bounded above by the surface $z=4-y^{2}$ and below by the rectangle
$R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2\}$.
Solution. First, notice that $z=f(x, y)=2-y^{2}$ is nonnegative over R since $0 \leq y \leq 2$ for $(x, y) \in R$. So by the definition of volume and by Fubini's Theorem, First Form (Theorem 1), we have

$$
V=\iint_{R} f(x, y) d A=\int_{0}^{1} \int_{0}^{2} 4-y^{2} d y d x=\int_{0}^{2} \int_{0}^{1} 4-y^{2} d x d y
$$

We choose to integrate with respect to x first:

Exercise 15.1.28

Exercise 15.1.28. Find the volume of the region bounded above by the surface $z=4-y^{2}$ and below by the rectangle $R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2\}$.

Solution. First, notice that $z=f(x, y)=2-y^{2}$ is nonnegative over R since $0 \leq y \leq 2$ for $(x, y) \in R$. So by the definition of volume and by Fubini's Theorem, First Form (Theorem 1), we have

$$
V=\iint_{R} f(x, y) d A=\int_{0}^{1} \int_{0}^{2} 4-y^{2} d y d x=\int_{0}^{2} \int_{0}^{1} 4-y^{2} d x d y
$$

We choose to integrate with respect to x first:

$$
\begin{aligned}
V= & \int_{0}^{2} \int_{0}^{1} 4-y^{2} d x d y=\left.\int_{0}^{2}\left(4 x-x y^{2}\right)\right|_{x=0} ^{x=1} d y=\int_{0}^{2}\left(4-y^{2}\right)-(0) d y \\
& =\left.\left(4 y-\frac{y^{3}}{3}\right)\right|_{y=0} ^{y=2}=\left(4(2)-\left(2^{3}\right) / 3\right)-(0)=8-8 / 3=16 / 3
\end{aligned}
$$

