Calculus 3

Chapter 15. Multiple Integrals

15.2. Double Integrals over General Regions-Examples and Proofs of Theorems

Table of contents

(1) Exercise 15.2.20
(2) Exercise 15.2 .40
(3) Exercise 15.2.50
(4) Exercise 15.2 .58
(5) Exercise 15.2.76

Exercise 15.2.20

Exercise 15.2.20. Sketch the region of integration and evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x$.

Solution. The region is:

Exercise 15.2.20

Exercise 15.2.20. Sketch the region of integration and evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x$.
Solution. The region is:

We evaluate the iterated integral as:

$$
\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x=\left.\int_{0}^{\pi} \frac{y^{2}}{2}\right|_{y=0} ^{y=\sin x} d x=\int_{0}^{\pi} \frac{\sin ^{2} x}{2}-0 d x
$$

Exercise 15.2.20

Exercise 15.2.20. Sketch the region of integration and evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x$.
Solution. The region is:

We evaluate the iterated integral as:

$$
\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x=\left.\int_{0}^{\pi} \frac{y^{2}}{2}\right|_{y=0} ^{y=\sin x} d x=\int_{0}^{\pi} \frac{\sin ^{2} x}{2}-0 d x
$$

Exercise 15.2.20 (continued)

Exercise 15.2.20. Sketch the region of integration and evaluate the double integral $\int_{0}^{\pi} \int_{0}^{\sin x} y d y d x$.
Solution (continued).

$$
\begin{aligned}
& =\int_{0}^{\pi} \frac{1}{2} \frac{1-\cos 2 x}{2} d x \text { since } \sin ^{2} x=\frac{1-\cos 2 x}{2} \\
& =\frac{x}{4}-\left.\frac{\sin 2 x}{8}\right|_{x=0} ^{x=\pi}=\left(\frac{\pi}{4}-\frac{\sin 2 \pi}{8}\right)-(0)=\frac{\pi}{4}
\end{aligned}
$$

Exercise 15.2.40

Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse:
$\int_{0}^{2} \int_{0}^{4-y^{2}} y d x d y$.
Solution. We first have x ranging from 0 to $4-y^{2}$, and second y ranges from 0 to 2 . So the region is:

Exercise 15.2.40

Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse:
$\int_{0}^{2} \int_{0}^{4-y^{2}} y d x d y$.
Solution. We first have x ranging from 0 to $4-y^{2}$, and second y ranges from 0 to 2 . So the region is:

Now we can interpret that first y ranges
from 0 to the curve $x=4-y^{2}$
(or $y=\sqrt{4-x}$, since $y \geq 0$ on the region) and second x ranges from 0 to 4 .
So the integral becomes

$$
\int_{0}^{4} \int_{0}^{\sqrt{4-x}} y d y d x
$$

Exercise 15.2.40

Exercise 15.2.40. Sketch the region of integration and write the equivalent double integral with the order of integration reverse:
$\int_{0}^{2} \int_{0}^{4-y^{2}} y d x d y$.
Solution. We first have x ranging from 0 to $4-y^{2}$, and second y ranges from 0 to 2 . So the region is:

Now we can interpret that first y ranges from 0 to the curve $x=4-y^{2}$
(or $y=\sqrt{4-x}$, since $y \geq 0$ on the region) and second x ranges from 0 to 4 .
So the integral becomes

$$
\int_{0}^{4} \int_{0}^{\sqrt{4-x}} y d y d x
$$

Exercise 15.2.50

Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x
$$

Solution. We first have y ranging from 0 to $4-x^{2}$, and second x ranges from 0 to 2 . So the region is:

Exercise 15.2.50

Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x
$$

Solution. We first have y ranging from 0 to $4-x^{2}$, and second x ranges from 0 to 2 . So the region is:

Exercise 15.2.50

Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x
$$

Solution. We first have y ranging from 0 to $4-x^{2}$, and second x ranges from 0 to 2 . So the region is:

Now we can interpret that first x ranges from 0 to the curve $y=4-x^{2}$ (or $x=\sqrt{4-y}$, since $x \geq 0$ on the region) and second y ranges from 0 to 4 .
So the integral becomes

$$
\int_{0}^{4} \int_{0}^{\sqrt{4-y}} \frac{x e^{2 y}}{4-y} d x d y
$$

Exercise 15.2.50 (continued)

Exercise 15.2.50. Sketch the region of integration, reverse the order of integration, and evaluate the integral:

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x
$$

Solution (continued). We now evaluate the new iterated integral:

$$
\begin{gathered}
\int_{0}^{4} \int_{0}^{\sqrt{4-y}} \frac{x e^{2 y}}{4-y} d x d y=\left.\int_{0}^{4} \frac{x^{2} e^{2 y}}{2(4-y)}\right|_{x=0} ^{x=\sqrt{4-y}} d y \\
=\int_{0}^{4} \frac{(\sqrt{4-y})^{2} e^{2 y}}{2(4-y)}-0 d y=\int_{0}^{4} \frac{(4-y) e^{2 y}}{2(4-y)} d y=\int_{0}^{4} \frac{e^{2 y}}{2} d y \\
=\left.\frac{e^{2 y}}{4}\right|_{y=0} ^{y=4}=\frac{e^{2(4)}}{4}-\frac{e^{2(0)}}{4}=\frac{e^{8}-1}{4} .
\end{gathered}
$$

Exercise 15.2.58

Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder $z=x^{2}$ and below by the region enclosed by the parabola $y=2-x^{2}$ and the line $y=x$ in the $x y$-plane.

Solution. The region R is:

Exercise 15.2.58

Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder $z=x^{2}$ and below by the region enclosed by the parabola $y=2-x^{2}$ and the line $y=x$ in the $x y$-plane.

Solution. The region R is:

First y ranges from x to $2-x^{2}$,
and second x ranges from -2 to 1
Since $z=f(x, y)=x^{2}$ is nonnegative over R then the desired volume is

Exercise 15.2.58

Exercise 15.2.58. Find the volume of the solid that is bounded above the cylinder $z=x^{2}$ and below by the region enclosed by the parabola $y=2-x^{2}$ and the line $y=x$ in the $x y$-plane.

Solution. The region R is:

First y ranges from x to $2-x^{2}$, and second x ranges from -2 to 1 .
Since $z=f(x, y)=x^{2}$ is nonnegative over R then the desired volume is

$$
V=\int_{-2}^{1} \int_{x}^{2-x^{2}} x^{2} d y d x
$$

Exercise 15.2.58 (continued)

Solution (continued). So the volume is

$$
\begin{gathered}
V=\int_{-2}^{1} \int_{x}^{2-x^{2}} x^{2} d y d x=\left.\int_{-2}^{1} x^{2} y\right|_{y=x} ^{y=2-x^{2}} d x \\
=\int_{-2}^{1} x^{2}\left(2-x^{2}\right)-x^{2}(x) d x=\int_{-2}^{1} 2 x^{2}-x^{4}-x^{3} d x=\frac{2 x^{3}}{3}-\frac{x^{5}}{5}-\left.\frac{x^{4}}{4}\right|_{x=-2} ^{x=1} \\
=\left(\frac{2(1)^{3}}{3}-\frac{(1)^{5}}{5}-\frac{(1)^{4}}{4}\right)-\left(\frac{2(-2)^{3}}{3}-\frac{(-2)^{5}}{5}-\frac{(-2)^{4}}{4}\right) \\
=\frac{2}{3}-\frac{1}{5}-\frac{1}{4}+\frac{16}{3}-\frac{32}{5}+4=\frac{40}{60}-\frac{12}{60}-\frac{15}{60}+\frac{320}{60}-\frac{384}{60}+\frac{240}{60}=\frac{189}{60}=\frac{63}{20} .
\end{gathered}
$$

Exercise 15.2.76

Exercise 15.2.76. (Unbounded Region) Integrate $f(x, y)=\frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}}$ over the infinite rectangle $2 \leq x<\infty$, $0 \leq y \leq 2$.

Solution. We want to find $\int_{2}^{\infty} \int_{0}^{2} \frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}} d y d x$. This is an improper integral and so we write it as a limit:
$\int_{2}^{\infty} \int_{0}^{2} \frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}} d y d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \int_{0}^{2} \frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}} d y d x$

$$
\begin{gathered}
=\left.\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x^{2}-x} \frac{(y-1)^{1 / 3}}{1 / 3}\right|_{y=0} ^{y=2} d x \\
=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x^{2}-x} 3((2)-1)^{1 / 3}-\frac{1}{x^{2}-x} 3((0)-1) 1 / 3 d x
\end{gathered}
$$

Exercise 15.2.76

Exercise 15.2.76. (Unbounded Region) Integrate $f(x, y)=\frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}}$ over the infinite rectangle $2 \leq x<\infty$, $0 \leq y \leq 2$.

Solution. We want to find $\int_{2}^{\infty} \int_{0}^{2} \frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}} d y d x$. This is an improper integral and so we write it as a limit:
$\int_{2}^{\infty} \int_{0}^{2} \frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}} d y d x=\lim _{b \rightarrow \infty} \int_{2}^{b} \int_{0}^{2} \frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}} d y d x$
$=\left.\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x^{2}-x} \frac{(y-1)^{1 / 3}}{1 / 3}\right|_{y=0} ^{y=2} d x$
$=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x^{2}-x} 3((2)-1)^{1 / 3}-\frac{1}{x^{2}-x} 3((0)-1) 1 / 3 d x$

Exercise 15.2.76 (continued)

Exercise 15.2.76. (Unbounded Region) Integrate
$f(x, y)=\frac{1}{\left(x^{2}-x\right)(y-1)^{2 / 3}}$ over the infinite rectangle $2 \leq x<\infty$, $0 \leq y \leq 2$.

Solution (continued).

$$
\begin{gathered}
=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{6}{x^{2}-x} d x=6 \lim _{b \rightarrow \infty} \int_{2}^{b} \frac{1}{x-1}-\frac{1}{x} d x \text { by partial fractions } \\
=\left.6 \lim _{b \rightarrow \infty}(\ln (x-1)-\ln x)\right|_{x=b} ^{x=b}=\left.6 \lim _{b \rightarrow \infty} \ln \left(\frac{x-1}{x}\right)\right|_{x=2} ^{x=b} \\
=6 \lim _{b \rightarrow \infty} \ln \left(\frac{b-1}{b}\right)-6 \ln \left(\frac{(2)-1}{2}\right)=-6 \ln (1 / 2)=6 \ln 2 .
\end{gathered}
$$

