Chapter 11. Parametric Equations and Polar Coordinates

11.1. Parametrizations of Plane Curves

Definition. If x and y are given as functions x = f(t) and y = g(t) over an interval I of t-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a *Parametric curve*. The equations are *parametric* equations and t is the parameter. If I = [a, b] then (f(a), g(a)) is the initial point and (f(b), g(b)) is the terminal point.

Figure 11.1, page 628

Examples. Page 629 Example 3(a), page 634 number 14, page 635 number 32, page 632 Example 8 (a cycloid).

Note. The cycloid (turned over from the way it is presented in Example 8) is a solution to the *brachistochrone problem* which involves determining the path along which a bead will slip along a frictionless wire from one point to another in a minimum amount of time. Though this sounds like a simple max/min problem, it requires an area of math called the *calculus of variations* to show that the cycloid is a solution to the brachistochrone problem (and the only solution). In fact, it takes the same amount of time for the bead to travel from any point P on the cycloid to the point B as given in the following figure. This makes the cycloid a *tautochrone*, or same-time curve. Such a curve was used by Christian Huygens in the construction of a pendulum driven clock.

Figure 11.10, page 632

Example. Page 635 number 36.