Chapter 11. Parametric Equations and Polar

Coordinates

11.1. Parametrizations of Plane Curves

Definition. If x and y are given as functions $x=f(t)$ and $y=g(t)$ over an interval I of t-values, then the set of points $(x, y)=(f(t), g(t))$ defined by these equations is a Parametric curve. The equations are parametric equations and t is the parameter. If $I=[a, b]$ then $(f(a), g(a))$ is the initial point and $(f(b), g(b))$ is the terminal point.

Figure 11.1, page 628

Examples. Page 629 Example 3(a), page 634 number 14, page 635 number 32, page 632 Example 8 (a cycloid).

Note. The cycloid (turned over from the way it is presented in Example 8) is a solution to the brachistochrone problem which involves determining the path along which a bead will slip along a frictionless wire from one point to another in a minimum amount of time. Though this sounds like a simple max/min problem, it requires an area of math called the calculus of variations to show that the cycloid is a solution to the brachistochrone problem (and the only solution). In fact, it takes the same amount of time for the bead to travel from any point P on the cycloid to the point B as given in the following figure. This makes the cycloid a tautochrone, or same-time curve. Such a curve was used by Christian Huygens in the construction of a pendulum driven clock.

Figure 11.10, page 632
Example. Page 635 number 36.

