Chapter 11. Parametric Equations and Polar

Coordinates

11.2. Calculus with Parametric Curves

Definition. A parametrized curve $x=f(t)$ and $y=g(t)$ is differentiable at t if f and g are differentiable at t.

Note. By the Chain Rule, $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, or $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$ (assuming the three derivatives exist and $d x / d t \neq 0$). If $x=f(t)$ and $y=g(t)$ are twice-differentiable, then $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[y^{\prime}\right]=\frac{d y^{\prime} / d t}{d x / d t}$ where $y^{\prime}=d y / d x$ (and, again, $d x / d t \neq 0)$.

Example. Page 643, number 20.

Example. Page 643, number 22. HINT: In terms of $d y$-slices, the area is $\int_{a}^{b} x d y$.

Definition. Let C be a curve given parametrically by the equations $x=f(t)$ and $y=g(t)$ where $t \in[a, b]$. If f and g are continuously differentiable (that is, their derivatives are continuous $[a, b]$), then curve C is smooth.

Note. In Calculus 2 you saw that the length of a continuously differentiable function $y=f(x)$ on $[a, b]$ is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Informally, we can think of this as:

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{x=a}^{x=b} \sqrt{1+(d y / d x)^{2}} d x \\
& =\int_{x=a}^{x=b} \sqrt{\left(1+(d y / d x)^{2}\right) d x^{2}}=\int_{x=a}^{x=b} \sqrt{d x^{2}+d y^{2}} \\
& =\int_{x=a}^{x=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{x=a}^{x=b} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t=\int_{t_{a}}^{t_{b}} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

where $f\left(t_{a}\right)=a$ and $f\left(t_{b}\right)=b$.

Definition. If a curve C is defined parametrically by $x=f(t)$ and $y=g(t), t \in[a, b]$, where f^{\prime} and g^{\prime} are continuous and not simultaneously zero on $[a, b]$, and C is traversed exactly once as t increases from $t=a$ to $t=b$, then the length of C is

$$
L=\int_{a}^{b} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example. Page 643, number 26.

Note. In Calculus 2 you saw that the area of a surface of revolution which results from revolving $y=f(x)$ for $x \in[a, b]$ about the x-axis is $S=\int_{a}^{b} 2 \pi y d s$ where $d s$ is a differential of arclength. This inspires the following.

Definition. If a smooth curve $x=f(t), y=g(t)$, for $t \in[a, b]$, is traversed exactly once as t increases from a to b, then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows:

1. Revolution about the x-axis $(y \geq 0)$:

$$
S=\int_{a}^{b} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

2. Revolution about the y-axis $(x \geq 0)$:

$$
S=\int_{a}^{b} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .
$$

Example. Page 644, number 47b.

