Chapter 11. Parametric Equations and Polar Coordinates

11.2. Calculus with Parametric Curves

Definition. A parametrized curve x = f(t) and y = g(t) is differentiable at t if f and g are differentiable at t.

Note. By the Chain Rule, $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$, or $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$ (assuming the three derivatives exist and $dx/dt \neq 0$). If x = f(t) and y = g(t) are twice-differentiable, then $\frac{d^2y}{dx^2} = \frac{d}{dx}[y'] = \frac{dy'/dt}{dx/dt}$ where y' = dy/dx (and, again, $dx/dt \neq 0$).

Example. Page 643, number 20.

Example. Page 643, number 22. HINT: In terms of dy-slices, the area is $\int_a^b x \, dy$.

Definition. Let C be a curve given parametrically by the equations x = f(t) and y = g(t) where $t \in [a, b]$. If f and g are continuously differentiable (that is, their derivatives are continuous [a, b]), then curve C is *smooth*.

Note. In Calculus 2 you saw that the length of a continuously differentiable function y = f(x) on [a, b] is

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx.$$

Informally, we can think of this as:

$$\begin{split} L &= \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} \, dx = \int_{x=a}^{x=b} \sqrt{1 + (dy/dx)^{2}} \, dx \\ &= \int_{x=a}^{x=b} \sqrt{(1 + (dy/dx)^{2}) dx^{2}} = \int_{x=a}^{x=b} \sqrt{dx^{2} + dy^{2}} \\ &= \int_{x=a}^{x=b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt \\ &= \int_{x=a}^{x=b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} \, dt = \int_{t_{a}}^{t_{b}} \sqrt{(f'(t))^{2} + (g'(t))^{2}} \, dt \end{split}$$

where $f(t_a) = a$ and $f(t_b) = b$.

Definition. If a curve C is defined parametrically by x = f(t) and $y = g(t), t \in [a, b]$, where f' and g' are continuous and not simultaneously zero on [a, b], and C is traversed exactly once as t increases from t = a to t = b, then the *length of* C is

$$L = \int_{a}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} \, dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \, dt.$$

Example. Page 643, number 26.

Note. In Calculus 2 you saw that the area of a surface of revolution which results from revolving y = f(x) for $x \in [a, b]$ about the *x*-axis is $S = \int_a^b 2\pi y \, ds$ where ds is a differential of arclength. This inspires the following.

Definition. If a smooth curve x = f(t), y = g(t), for $t \in [a, b]$, is traversed exactly once as t increases from a to b, then the areas of the surfaces generated by revolving the curve about the coordinate axes are as follows:

1. Revolution about the *x*-axis $(y \ge 0)$:

$$S = \int_{a}^{b} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

2. Revolution about the y-axis $(x \ge 0)$:

$$S = \int_{a}^{b} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

Example. Page 644, number 47b.