Chapter 11. Parametric Equations and Polar

Coordinates

11.3. Polar Coordinates

Definition. We define the polar coordinates of a point $P(r, \theta)$ in the Cartesian plane by introducing an initial ray from the origin O which lies along the x-axis. Point P is then said to lie at $P(r, \theta)$ if either (1) it lies a distance $r(r \geq 0)$ along a ray which makes an angle of θ with the initial ray, or (2) it lies a distance $-r(r \leq 0)$ along a ray which makes an angle of θ with the initial ray. Coordinate r gives the directed distance of P from O.

Note. Due to the the fact that coterminal rays can be represented with different values of θ, then a point in the Cartesian plane can have multiple representations in polar coordinates.

Example. Page 648, number 4c.

Note. If we hold r fixed at a constant value, $r=a \neq 0$, then the point $P(r, \theta)$ will lie $|a|$ units from the origin O. As θ varies over any interval of length $2 \pi, P$ then traces a circle of radius $|a|$ centered at O. If we hold θ fixed at a constant value $\theta=\theta_{0}$ and let r vary between $-\infty$ and ∞, the point $P(r, \theta)$ traces the line through O that makes an angle of measure θ_{0} with the initial ray. In general, we can relate Cartesian (x, y) coordinates to polar coordinates $P(r, \theta)$ as:

$$
x=r \cos \theta, y=r \sin \theta, r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x} .
$$

Figure 11.24, page 647

Examples. Page 649, numbers 36 and 62.

