Chapter 11. Parametric Equations and Polar

Coordinates

11.5. Areas and Lengths in Polar Coordinates

Note. Recall that a sector of a circle with radius r and central angle θ has area $\frac{1}{2} r^{2} \theta$. The region $O T S$ in Figure 11-30 below is bounded by the rays $\theta=\alpha$ and $\theta=\beta$ and the curve $r=f(\theta)$. We partition the interval $[\alpha, \beta]$ into n pieces. The typical sector (a " $d \theta$-slice") has radius $r_{k}=f\left(\theta_{k}\right)$ and central angle of measure $\Delta \theta_{k}$. So this sector has area $A_{k}=\frac{1}{2} r_{k}^{2} \Delta \theta_{k}=\frac{1}{2}\left(f\left(\theta_{k}\right)\right)^{2} \Delta \theta_{k}$. Summing up the areas of the sectors produces a Riemann sum. Letting the limit of the norm of the partition approach 0 yields the exact area:

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta .
$$

Figure 11.30, page 653

Example. Page 656, number 6.

Note. If $r=f(\theta)$, then we can treat θ as the parameter, and say that the rectangular coordinates x and y are determined parametrically as $x=r \cos \theta=f(\theta) \cos \theta$ and $y=r \sin \theta=f(\theta) \sin \theta$. The length of $r=f(\theta)$ for $\theta \in[\alpha, \beta]$ (where the curve determined by $r=f(\theta)$ is traced out exactly once for $\theta \in[\alpha, \beta]$) is:

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \\
& =\int_{\alpha}^{\beta} \sqrt{\left(f^{\prime}(\theta) \cos \theta+f(\theta) \sin \theta\right)^{2}+\left(f^{\prime}(\theta) \sin \theta-f(\theta) \cos \theta\right)^{2}} d \theta \\
& =\frac{\int_{\alpha}^{\beta} \sqrt{\left(f^{\prime}(\theta)\right)^{2} \cos ^{2} \theta+2 f^{\prime}(\theta) f(\theta) \cos \theta \sin \theta+(f(\theta))^{2} \sin ^{2} \theta}}{+\left(f^{\prime}(\theta)\right)^{2} \sin ^{2} \theta-2 f^{\prime}(\theta) f(\theta) \sin \theta \cos \theta+\left(f(\theta)^{2} \cos ^{2} \theta\right.} d \theta \\
& =\int_{\alpha}^{\beta} \sqrt{\left(f^{\prime}(\theta)\right)^{2}+(f(\theta))^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta .
\end{aligned}
$$

Example. Page 657, number 22.

