Chapter 12. Vectors and the Geometry of Space

12.5. Lines and Planes in Space

Note. In the plane, a line is determined by a point and a number giving the slope of the line. In space, a line is determined by a point and a vector giving the direction of the line.

Figure 12.35, page 706
Definition. The vector equation for the line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to \mathbf{v} is

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad t \in(-\infty, \infty)
$$

where \mathbf{r} is the position vector of a point $P(x, y, z)$ on L and \mathbf{r}_{0} is the position vector of $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ (and so $\left.\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle\right)$.

Definition. The standard parametrization of the line through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ is

$$
x=x_{0}+t v_{1}, y=y_{0}+t v_{2}, z=z_{0}+t v_{3}, t \in(-\infty, \infty) .
$$

Example. Page 712, number 16.

Note. To find the distance from a point S to a line that passes through a point P parallel to a vector \mathbf{v}, we find the absolute value of the scalar component of $\overrightarrow{P S}$ in the direction of a vector normal to the line. As given in Figure 12.38 below, this value is $|\overrightarrow{P S}| \sin \theta=\frac{|\overrightarrow{P S} \times \mathbf{v}|}{|\mathbf{v}|}$.

Figure 12.38, page 708

Example. Page 713, number 36.

Note. Suppose that plane M passes through a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and is normal to the nonzero vector $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$. Then M is the set of all points $P(x, y, z)$ for which $\overrightarrow{P_{0} P}$ is orthogonal to \mathbf{n}. Thus, the dot product $\mathbf{n} \cdot \overrightarrow{P_{0} P}=0$. This yields

$$
(A \mathbf{i}+B \mathbf{j}+C \mathbf{k}) \cdot\left(\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right)=0
$$

or

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 .
$$

So the equation of a plane is determined by a point P_{0} and a normal vector
n.

Figure 12.39, page 709

Example. Page 713, number 22.
Example. Page 713, number 58.

Note. If P is a point on a plane with normal vector \mathbf{n}, then the distance from any point S to the plane is the length of the vector projection of $\overrightarrow{P S}$ onto \mathbf{n}. This distance is $\left|\operatorname{proj}_{\mathbf{n}} \overrightarrow{P S}\right|=\left|\overrightarrow{P S} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|$.

Example. Page 713, number 40.

Example. Page 714, number 70.

