Chapter 12. Vectors and the Geometry of Space

12.6. Cylinders and Quadric Surfaces

Definition. A cylinder is a surface that is generated by moving a straight line along a given planar curve while holding the line parallel to a given fixed line. The curve is called a generating curve for the cylinder.

Figure 12.43, page 714

Definition. A quadric surface is the graph in space of a second-degree equation in x, y, and z. We focus on the special equation $A x^{2}+B y^{2}+$ $C z^{2}+D z=E$ where A, B, C, D, and E are constants. The basic quadric surfaces are ellipsoids, paraboloids, elliptical cones, and hyperboloids.

Example. Page 715, Example 2. Consider the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Figure 12.45, page 715

Example. Page 716, Example 4. Consider the hyperbolic paraboloid $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=\frac{z}{c}, c>0$.

Figure 12.46, page 715

Note. Table 12.1 gives the graphs of several quadric surfaces.

Table 12.1, page 717

Examples. Page 718, numbers 6, 8, 20, and 28.

