Chapter 13. Vector-Valued Functions and Motion in Space

 13.5. Tangential and Normal Components of

 13.5. Tangential and Normal Components of

 Acceleration

 Acceleration}

Note. If we let $\mathbf{r}(t)$ be a position function and interpret this as the movement of a particle as a function of time, then the unit tangent vector \mathbf{T} represents the direction of travel of the particle and the principal unit vector \mathbf{N} indicates the direction the path is turning into. Since both of these vectors are unit vectors, it is their direction that contains information. For any fixed time t, acceleration is a linear combination of \mathbf{T} and $\mathbf{N}: \mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$ for some a_{T} and a_{N}.

Definition. Define the unit binormal vector as $\mathbf{B}=\mathbf{T} \times \mathbf{N}$.

Note. Notice that since \mathbf{T} and \mathbf{N} are orthogonal unit vectors, then \mathbf{B} is in fact a unit vector. Changes in vector \mathbf{B} reflect the tendency of the motion of the particle with position function $\mathbf{r}(t)$ to 'twist' out of the plane created by vectors \mathbf{T} and \mathbf{N}. Also notice that vectors \mathbf{T}, \mathbf{N}, and B define a moving right-hand vector "frame." This frame is called the

Frenet frame or the TNB frame.

Figure 13.23, page 752

Note. As commented above, we can write $\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$ for some a_{T} and a_{N}. We want to find formulae for a_{T} and a_{N}. By the Chain Rule,

$$
\mathbf{v}=\frac{d \mathbf{r}}{d t}=\frac{d \mathbf{r}}{d s} \frac{d s}{d t}=\mathbf{T} \frac{d s}{d t}
$$

So acceleration is

$$
\begin{aligned}
\mathbf{a} & =\frac{d \mathbf{v}}{d t}=\frac{d}{d t}\left[\mathbf{T} \frac{d s}{d t}\right]=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t} \frac{d \mathbf{T}}{d t} \\
& =\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t}\left(\frac{d \mathbf{T}}{d s} \frac{d s}{d t}\right)=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t}\left(\kappa \mathbf{N} \frac{d s}{d t}\right) \\
& =\frac{d^{2} s}{d t^{2}} \mathbf{T}+\kappa\left(\frac{d s}{d t}\right)^{2} \mathbf{N} .
\end{aligned}
$$

(Recall that $\frac{d \mathbf{T}}{d s}=\kappa \mathbf{N}$.)

Definition. If the acceleration vector is written as $\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$, then

$$
a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}[|\mathbf{v}|] \text { and } a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}=\kappa|\mathbf{v}|^{2}
$$

are the tangential and normal scalar components of acceleration. (Recall that s is arclength and so $d s / d t$ is the rate at which arclength is traversed with respect to time. That is, $d s / d t$ is speed: $d s / d t=|\mathbf{v}|$.)

Figure 13.25, page 753

Note. If we are given the position function $\mathbf{r}(t)$, then a_{T} is easy to find (just calculate $\frac{d}{d t}\left[\left\lfloor\left.\frac{d \mathbf{r}}{d t} \right\rvert\,\right]\right.$). But the computation of a_{N} seems to require us to find curvature κ. But there is a quicker way. Since $\mathbf{a}=a_{T} \mathbf{T}+a_{N} \mathbf{N}$ and \mathbf{T} and \mathbf{N} are orthogonal, then $|\mathbf{a}|^{2}=a_{T}^{2}+a_{N}^{2}$. Therefore we can solve to a_{N} and find that: $a_{N}=\sqrt{|\mathbf{a}|^{2}-a_{T}}$.

Example. Page 756, number 8.

Note. We have commented that changes in the binormal vector \mathbf{B} reflect the tendency of the motion of the particle with position function $\mathbf{r}(t)$ to 'twist' out of the plane created by vectors \mathbf{T} and \mathbf{N}. This twisting is called torsion. We are interested in how \mathbf{B} changes with respect to arclength s :

$$
\frac{d \mathbf{B}}{d s}=\frac{d[\mathbf{T} \times \mathbf{N}]}{d s}=\frac{\mathbf{T}}{d s} \times \mathbf{N}+\mathbf{T} \times \frac{d \mathbf{N}}{d s}=\mathbf{0}+\mathbf{T} \times \frac{d \mathbf{N}}{d s}=\mathbf{T} \times \frac{d \mathbf{N}}{d s}
$$

since $d \mathbf{T} / d s$ is parallel to \mathbf{N}.
We need a quick result concerning vector functions of constant magnitude (see page 731): Lemma. If $\mathbf{r}(t)$ is a vector function such that $|\mathbf{r}(t)|=c$ for some constant c, then $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ are orthogonal. The proof is computational:

$$
\begin{aligned}
\mathbf{r}(t) \cdot \mathbf{r}(t) & =|\mathbf{r}(t)|^{2}=c^{2} \\
\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{r}(t)] & =\frac{d}{d t}\left[c^{2}\right] \\
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t) & =0 \\
2 \mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t) & =0 .
\end{aligned}
$$

Since $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)=0$, the vectors are orthogonal.
Returning to \mathbf{B}, we know from above that $d \mathbf{B} / d s$ is orthogonal to \mathbf{T} since it is the cross product of vector \mathbf{T} and another vector. Since \mathbf{B}
is always a unit vector, then by Lemma $d \mathbf{B} / d s$ is also orthogonal to \mathbf{B}. Therefore $d \mathbf{B} / d s$ must be a multiple of vector \mathbf{N}. We define the torsion τ with the formula $\frac{d \mathbf{B}}{d s}=-\tau \mathbf{N}$. We can compute τ as follows:

$$
\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}=-\tau \mathbf{N} \cdot \mathbf{N}=-\tau(1)=-\tau
$$

and so $\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}$. As the book states, the curvature $\kappa=|d \mathbf{T} / d s|$ can be thought of as the rate at which the normal plane turns as the point P moves along its path. The torsion $\tau=-(d \mathbf{B} / d s) \cdot \mathbf{N}$ is the rate at which the osculating plane turns about \mathbf{T} as P moves along the curve. "Torsion measures how the curve twists. ... In a more advanced course it can be shown that a space curve is a helix if and only if it has constant nonzero curvature and constant nonzero torsion." [Smiley Face!]

Figure 13.28, page 755

Note. Consider a position function $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$. It can be shown ("in more advanced texts") that torsion can be computed as

$$
\tau=\frac{\left|\begin{array}{ccc}
\dot{x} & \dot{y} & \dot{z} \\
\ddot{x} & \ddot{y} & \ddot{z} \\
\dddot{x} & \dddot{y} & \dddot{z}
\end{array}\right|}{|\mathbf{v} \times \mathbf{a}|^{2}}
$$

where $\mathbf{v} \times \mathbf{a} \neq \mathbf{0}$ and the dots indicate (as is tradition in physics) derivatives with respect to time $t: \dot{x}=d x / d t$. So the first row of the matrix consists of the components of velocity $\mathbf{r}^{\prime}(t)=\mathbf{v}$, the second row consists of components of acceleration $\mathbf{r}^{\prime \prime}(t)=\mathbf{a}$ and the third row consists of components of jerk $\mathbf{r}^{\prime \prime \prime}(t)$.

Examples. Page 757, numbers 14 and 26.

Note. In summary, we have the following formulae:
Position: $\mathbf{r}(t)=\mathbf{r}$
Unit tangent vector: $\mathbf{T}=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\mathbf{v}}{|\mathbf{v}|}$
Principal unit normal vector: $\mathbf{N}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|}$
Binormal vector: $\mathbf{B}=\mathbf{T} \times \mathbf{N}$
Curvature: $\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^{3}}$ (see Page 756, number 21)

Torsion: $\tau=-\frac{d \mathbf{B}}{d s} \cdot \mathbf{N}=\frac{\left|\begin{array}{ccc}\dot{x} & \dot{y} & \dot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \\ \dddot{x} & \ddot{y} & \ddot{z}\end{array}\right|}{|\mathbf{v} \times \mathbf{a}|^{2}}=-\frac{1}{|\mathbf{v}|}\left(\frac{d \mathbf{B}}{d t} \cdot \mathbf{N}\right)$ (see Page 757, number 28)

Tangential and normal scalar components of acceleration:

$$
\mathbf{A}=a_{T} \mathbf{T}+a_{N} \mathbf{N}
$$

where $a_{T}=\frac{d}{d t}[|\mathbf{v}|]$ and $a_{N}=\kappa|\mathbf{v}|^{2}=\sqrt{\mid \mathbf{a}^{2}-a_{T}}$.

Note. For an alternate treatment of this same material, see Section 1-1 of my notes for Differential Geometry (MATH 5510) at:
http://faculty.etsu.edu/gardnerr/5310/notes.htm.

Section 1-2 of these notes deals with the curvature of surfaces.

