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Chapter 14. Partial Derivatives

14.2. Limits and Continuity in Higher

Dimensions

Note. Analogous to the behavior of a function of a single variable, we wish

to cleanly define the concept of limit for a function of “several” variables

(in this section “several” means two, but the ideas are easily extended

to more than two variables). If the values of f (x, y) lie arbitrarily close

to a fixed real number L for all points (x, y) sufficiently close to a point

(x0, y0), we say that f approaches the limit L as (x, y) approaches (x0, y0).

As in Calculus 1, we just need to clearly define the “arbitrarily/sufficiently”

stuff. However, the textbook somewhat deviates from the definition of

limit from Calculus 1 and this has some weird consequences!

Thomas’ Definition. We say that a function f (x, y) approaches the

limit L as (x, y) approaches (x0, y0), denoted lim
(x,y)→(x0,y0)

f (x, y) = L, if

for every number ε > 0, there exists a corresponding number δ > 0 such

that for all (x, y) in the domain of f ,

|f (x, y) − L| < ε whenever 0 <
√

(x − x0)2 + (y − y0)2 < δ.
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Figure 14.12, page 774 (the “d” here should be a δ—this is a typo in this

figure, though your text has this correctly labeled).

Note. Notice the restriction of consideration to points (x, y) in the

domain of f !!! This is different from the definition of lim
x→x0

f (x) = L

on page 77 where it is required that the function “f (x) be defined on an

open interval containing x0 except possibly at x0 itself.” So in Calculus

1, you saw that lim
x→0

√
x does not exist (since the corresponding left-sided

limit does not exist—it’s a square-root-of-negatives problem). However,

in the current setting of section 14.2, we would ignore any square roots

of negatives since any points (x, y) which would generate this are not in

the domain of the function. Therefore, we have the following result which
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we will prove from the definition of limit: lim
(x,y)→(0,0)

√
x = 0. This is in

seeming contradiction to the fact that lim
x→0

√
x does not exist, but this

strange situation arises from the fact that the textbook is treating limits

in a rather fundamentally different way in this section (as it also did in

section 13.1). More soon, but first an example.

Example. Use the definition of limit to prove that lim
(x,y)→(0,0)

√
x = 0.

Proof. Let ε > 0 be an arbitrary number. Then we need to find a

corresponding number δ > 0 which will satisfy the definition of limit

given above. We choose (omitting the details on why we make this

choice) δ = ε2. Consider (x, y) in the domain of f (x) =
√

x (the do-

main of f is {(x, y) | x ≥ 0}) such that 0 <
√

(x − x0)2 + (y − y0)2 =
√

(x − 0)2 + (y − 0)2 =
√

x2 + y2 < δ. Notice that |x| =
√

x2 ≤
√

x2 + y2

and so this implies that |x| < δ = ε2. Since we only consider (x, y) in

the domain of f , we have 0 ≤ x < ε2. Therefore
√

x <
√

ε2 = |ε| = ε.

Hence, we have
√

x = |√x| = |√x − 0| = |f (x, y) − L| ≤ ε. Therefore

the definition of limit is satisfied and we conclude that lim
(x,y)→(0,0)

√
x = 0.

Q.E.D.
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Note. Since there is no restriction in Thomas’ Definition on the relation-

ship between the domain of f and the point (x0, y0) (such as having f

be defined “near” (x0, y0)), then we can get some totally bizarre results.

Both of the following are true statements (here we are, again, dealing with

bonus education):

lim
(x,y)→(−1,−1)

√
x
√

y = 5 and lim
(x,y)→(−1,−1)

√
x
√

y = 7.

In fact, we can accurately say (given Thomas’ Definition) that

lim
(x,y)→(−1,−1)

√
x
√

y

equals any value you like! This is a bit of a logical trick (something the

text should be more careful of avoiding!) and works like this. Let ε > 0.

Choose δ = 1. Then for any point (x, y) in the domain of f satisfying

0 <
√

(x − (−1))2 + (y − (−1))2 =
√

(x + 1)2 + (y + 1)2 < δ = 1 (of

which there are no such points!), we have |f (x, y) − L| < ε (where

we can take L to be 5, 7, or anything). The logical trick is that the

book’s definition is vacuously satisfied—it is true that all such points

(x, y) satisfy this relationship since there are no such points! This may

seem like mathematical sorcery, but we can’t let this stand!!! One

solution is to require that the function be defined “close to” point (x0, y0).
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Alternate Definition 1. Let f (x, y) be defined on a disk centered

at (x0, y0), except possibly at (x0, y0) itself. We say that a function

f (x, y) approaches the limit L as (x, y) approaches (x0, y0), denoted

lim
(x,y)→(x0,y0)

f (x, y) = L, if for every number ε > 0, there exists a cor-

responding number δ > 0 such that for all (x, y)

|f (x, y) − L| < ε whenever 0 <
√

(x − x0)2 + (y − y0)2 < δ.

Note. This definition eliminates the weird behavior described above

where a limit can have more than one value. It also is consistent with

the definition of limit of a function of a single variable given on page 77.

However, this definition is somewhat restrictive, and would not allow us

to say the limit in Example 2 on page 775 exists. A better way to deal

with this is the following.

Alternate Definition 2. Let (x0, y0) be a limit point of the domain

of f . We say that a function f (x, y) approaches the limit L as (x, y)

approaches (x0, y0), denoted lim
(x,y)→(x0,y0)

f (x, y) = L, if for every number

ε > 0, there exists a corresponding number δ > 0 such that for all (x, y)

in the domain of f ,

|f (x, y) − L| < ε whenever 0 <
√

(x − x0)2 + (y − y0)2 < δ.
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Note. This definition eliminates the weird behavior described above

where a limit can have more than one value. However, it still keeps

lim
(x,y)→(0,0)

√
x = 0. The best way (i.e., the most practical way) for us

to deal with this is to take Alternate Definition 2 as our definition of limit

for a function of two variables and to view the facts that

lim
(x,y)→(0,0)

√
x = 0 and lim

x→0

√
x does not exist

as the result of considering similar questions, but in different settings

(namely, functions of a single variable versus functions of two variables).

We could attain the highest level of consistency and diversity of applica-

tion, by using Alternate Definition 1 and revising the definition of limit

of a function of a single variable to require x0 to be a limit point of the

domain of the function and to only consider points in the domain of the

function:

Proposed Alternate Definition to That Given on Page 77.

Let x0 be a limit point of the domain of f . We say that a function f (x)

approaches the limit L as x approaches x0, denoted lim
x→x0

f (x) = L, if for

every number ε > 0, there exists a corresponding number δ > 0 such that

for all x in the domain of f ,

|f (x) − L| < ε whenever 0 < |x − x0| < δ.



14.2 Limits and Continuity in Higher Dimensions 7

Under this definition, lim
x→0

√
x = 0 (a result you might find pleasing, since

it can be evaluated with substitution). In fact, some texts (usually more

advanced than a calculus text) take this as the definition of limit. So

enough to the bonus education, and back to the task at hand.

Theorem 1. Properties of Limits of Functions of Two Vari-

ables.

The following rules hold if L, M , and k are real numbers and

lim
(x,y)→(x0,y0)

f (x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = M.

1. Sum Rule: lim
(x,y)→(x0,y0)

(f (x, y) + g(x, y)) = L + M

2. Difference Rule: lim
(x,y)→(x0,y0)

(f (x, y) − g(x, y)) = L − M

3. Constant Multiple Rule: lim
(x,y)→(x0,y0)

kf (x, y) = kL (any number k)

4. Product Rule: lim
(x,y)→(x0,y0)

(f (x, y)g(x, y)) = LM

5. Quotient Rule: lim
(x,y)→(x0,y0)

f (x, y)

g(x, y)
=

L

M
, M 6= 0

6. Power Rule: lim
(x,y)→(x0,y0)

(f (x, y))n = Ln, n a positive integer

7. Root Rule: lim
(x,y)→(x0,y0)

n

√

f (x, y) =
n

√
L = L1/n, n a positive integer

and if n is even, we assume L ≥ 0.
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Note. The textbook makes a bit of an error here. In the Root Rule,

the book state that it requires L > 0 when n is even. However, with the

book’s definition of limit (as well as with our Alternate Definition 2) we

can also allow L = 0. Were we to take Alternate Definition 1, then we

would need the strict inequality L > 0. Under Thomas’ Definition of limit

of a function of a single variable on page 77, the Root Rule only holds for

L > 0 when n is even (see page 68). All of this is the result of whether

or not we consider only values of the independent variable(s) which are

in the domain or not and the issue of square roots of negatives (an issue

which potentially arises when n is even and L = 0). A funny story is

how the 9th and 10th editions of Thomas’ Calculus mistakenly allowed

L = 0 in the Root Rule when considering limits of functions of a single

variable. . . ask me about it sometime. . .

Example. Page 775, Example 2. Evaluate lim
(x,y)→(0,0)

x2 − xy√
x −√

y
. Notice

that any point (x, y) where x = y is not in the domain of the function

and (x − y) 6= 0.

Example. Page 780, number 20. Notice the textbook’s restriction of

x 6= y + 1. It is unnecessary to state this under the book’s definition of

limit (and under our Alternative Definition 2) since any point (x, y) where

x = y + 1 is not in the domain of the function.
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Definition. A function f (x, y) is continuous at the point (x0, y0) if

1. f is defined at (x0, y0),

2. lim
(x,y)→(x0,y0)

f (x, y) exists, and

3. lim
(x,y)→(x0,y0)

f (x, y) = f (x0, y0).

A function is continuous if it is continuous at every point of its domain.

Note. And again, since the textbook’s definition of limit in this chapter

is different from the definition of Chapter 2, then continuity is slightly

different here than in Chapter 2. Compare the definition of continuity

here to that on page 94 (the definition of continuity of a function of a

single variable at an interior point of its domain).

Example. Page 780, number 32a.

Note. To actually evaluate limits, we can use Theorem 1, along with

the standard “factor, cancel, substitute” (“FCS”) method. However, it

can be difficult to establish that a particular limit does not exist. In

Calculus 1, you could test left-hand and right-hand limits to see if the

“regular” two-sided limit exists. However, if a function consists of two

(or more) variables, then there are an infinite number of directions from
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which we can approach a point (x0, y0). We probably cannot test all of

these directions to see if they are the same, but we can cleverly check two

of them to see if they are different. That’s the idea behind the following.

Theorem. Two-Path Test for Nonexistence of a Limit.

If a function f (x, y) has different limits along two different paths in the

domain of f as (x, y) approaches (x0, y0), then lim
(x,y)→(x0,y0)

f (x, y) does

not exist. (NOTE: You’ll be relieved to hear that this holds regardless of

which of the many possible definitions we take of limit!)

Example. Page 780, number 46.

Theorem. Continuity of Composites.

If f is continuous at (x0, y0) and g is a single-variable function continuous

at f (x0, y0), then the composite function h(x, y) = g(f (x, y)) = g ◦ f is

continuous at (x0, y0).

Example. Page 780, number 40.


