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Chapter 14. Partial Derivatives

14.6. Tangent Planes and Differentials

Note. If r = g(t)i + h(t)j + k(t)k is a smooth curve on the level surface

f (x, y, z) = c of a differentiable function f , then f (g(t), h(t), k(t)) = c.

Differentiating both sides of this equation with respect to t gives
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At every point along the curve, ∇f is orthogonal to the curve’s velocity

vector. In the figure below, we see that all the velocity vectors at point

P0 are orthogonal to ∇f at P0, so the curves’ tangent lines all lie in the

plane through P0 normal to ∇f . Therefore, the gradient of f at P0 will
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act as a normal vector to the tangent plane to the surface at P0.

Figure 14.32, Page 810

Definition. The tangent plane at the point P0(x0, y0, z0) on the level

surface f (x, y, z) = c of a differentiable function f is the plane through

P0 normal to ∇f |P0
. The normal line of the surface at P0 is the line

through P0 parallel to ∇f |P0
.

Note. The equation of the tangent plane to f (x, y, z) = c at P0(x0, y0, z0)

is

fx(P0)(x − x0) + fy(P0)(y − y0) + fz(P0)(z − z0) = 0.

The equation of the normal line to f (x, y, z) = c at P0(x0, y0, z0) is

x = x0 + fx(P0)t, y = y0 + fy(P0)t, z = z0 + fz(P0)t.
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Example. Page 817, number 4.

Note. If we consider the function z = f (x, y), then the tangent plane to

this surface at the point (x0, y0, f (x0, y0)) is

fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) − (z − z0) = 0.

Example. Page 817, number 10.

Note. We now use differentials to estimate changes in functions, similar

to what was done for functions of a single variable in section 3.11. To

estimate the change in the value of a differentiable function f when we

move a small distance ds from a point P0 in a particular direction u, we

use the differential

df =
(

∇f |P0
· u

)

ds.

Notice that df is the directional derivative of f times the distance incre-

ment ds.

Example. Page 817, number 20.
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Definition. The linearization of a function f (x, y) at a point (x0, y0)

where f is differentiable is the function

L(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).

The approximation f (x, y) ≈ L(x, y) is the standard linear approxima-

tion of f at (x0, y0).

Note. In fact, the plane z = L(x, y) is tangent to the surface z = f (x, y)

at the point (x0, y0) (just as the line y = L(x) was the tangent line to y =

f (x) at the point of approximation in section 3.11). Thus, the linearization

of a function of two variables is a tangent-plane approximation. As long as

(x, y) is “close to” (x0, y0) (that is, if ∆x and ∆y are small), then L(x, y)

will take on approximately the same values as f (x, y).

Example. Page 818, number 30.

Note. If f has continuous first and second partial derivatives throughout

an open set containing a rectangle R centered at (x0, y0) and if M is any

upper bound for the values of |fxx|, |fyy|, and |fxy| on R, then the error

E(x, y) incurred in replacing f (x, y) on R by it linearization

L(x, y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)
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satisfies the inequality

|E(x, y)| ≤
1

2
M(|x − x0| + |y − y0|)

2.

Notice that the error is small when M , ∆x, and/or ∆y are small (especially

∆x and ∆y).

Example. Page 818, number 50.

Definition. The differentials dx and dy are independent variables (so

they can take on any values). Often we take dx = ∆x = x − x0 and

dy = ∆y = y − y0. If we move from (x0, y0) to a point (x0 + dx, y0 + dy)

nearby, the resulting change

df = fx(x0, y0)dx + fy(x0, y0)dy

in the linearization of f is called the total differential of f .

Example. Page 819, number 52.
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Note. We can extend the ideas of this section to functions of more than

two variables. For functions of three variables, we have the following.

1. The linearization of f (x, y, z) at a point P0(x0, y0, z0) is

L(x, y, z) = f (P0)+fx(P0)(x−x0)+fy(P0)(y−y0)+fz(P0)(z−z0).

2. Suppose that R is a closed rectangular solid centered at P0 and ly-

ing in an open region on which the second partial derivatives of f

are continuous. Suppose also that |fxx|, |fyy|, |fzz|, |fxy|, |fxz|, and

|fyz| are all less than or equal to M throughout R. Then the error

E(x, y, z) = f (x, y, z)−L(x, y, z) in the approximation of f by L is

bounded throughout R by

|E| ≤
1

2
M(|x − x0| + |y − y0| + |z − z0|)

2.

3. If the second partial derivatives of f are continuous and if x, y, and z

change from x0, y0, and z0 by “small” amounts dx, dy, and dz, the

total differential

df = fx(P0)dx + fy(P0)dy + fz(P0)dz

gives a “good” approximation of the resulting change in f .

Example. Page 818, number 44.


