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Chapter 14. Partial Derivatives

14.7. Extreme Values and Saddle Points

Definition. Let f (x, y) be defined on a region R containing the point

(a, b). Then

1. f (a, b) is a local maximum value of f if f (a, b) ≥ f (x, y) for all domain

points (x, y) in an open disk centered at (a, b).

2. f (a, b) is a local minimum value of f if f (a, b) ≤ f (x, y) for all domain

points (x, y) in an open disk centered at (a, b).

Figure 14.40, Page 821
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Theorem 10. First Derivative Test for Local Extreme Values

If f (x, y) has a local maximum or minimum value at an interior point

(a, b) of its domain and if the first partial derivatives exist there, then

fx(a, b) = 0 and fy(a, b) = 0.

Proof. If f has a local extremum at (a, b), then the function g(x) =

f (x, b) has a local extremum at x = a. Therefore g′(a) = 0. Now

g′(a) = fx(a, b), so fx(a, b) = 0. A similar argument with the function

h(y) = f (a, y) shows that fy(a, b) = 0. Q.E.D.

Figure 14.41, Page 821
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Definition. An interior point of the domain of a function f (x, y) where

both fx and fy are zero or where one or both of fx and fy do not exist is

a critical point of f . A differentiable function f (x, y) has a saddle point

at a critical point (a, b) if in every open disk centered at (a, b) there are

domain points (x, y) where f (x, y) > f (a, b) and domain points (s, y)

where f (x, y) < f (a, b). The corresponding point (a, b, f(a, b)) on the

surface z = f (x, y) is called a saddle point of the surface.

Figures 14.42 and 14.44, Pages 822 and 823

Example. Page 826, number 6 (find the critical points).



14.7 Extreme Values and Saddle Points 4

Theorem 11. Second Derivative Test for Local Extreme Val-

ues

Suppose that f (x, y) and its first and second partial derivatives are contin-

uous throughout a disk centered at (a, b) and that fx(a, b) = fy(a, b) = 0.

Then

(i) f has a local maximum at (a, b) if fxx < 0 and fxxfyy − f 2
xy > 0 at

(a, b).

(ii) f has a local minimum at (a, b) if fxx > 0 and fxxfyy − f 2
xy > 0 at

(a, b).

(iii) f has a saddle point at (a, b) if fxxfyy − f 2
xy < 0 at (a, b).

(iv) The test is inconclusive at (a, b) if fxxfyy − f 2
xy = 0 at (a, b). In this

case, we must find some other way to determine the behavior of f at

(a, b).
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Note. The expression fxxfyy−f 2
xy is called the discriminant or Hessian

of f . It is sometimes easier to remember it in determinant form:

fxxfyy − f 2
xy =

∣∣∣∣∣∣ fxx fxy

fxy fyy

∣∣∣∣∣∣ .

Theorem 11 makes the most since if we explore the topic of curvature!

The “Hessian” is really (related to) the curvature of the surface. When

curvature is positive at point (a, b) (as in cases (i) and (ii) of Theorem

11), then the surface lies entirely one one side of a tangent plane to the

surface at point (a, b) (in some neighborhood of (a, b)). Since at the

critical point we have fx(a, b) = fy(a, b) = 0, then the tangent plane is a

horizontal plane so the critical point corresponds to a local maximum if

the surface lies above the tangent plane, and the critical point corresponds

to a local minimum if the surface lies below the tangent plane. We can

determine which is the case be considering the sign of fxx to determine

the “concavity” of the surface. A surface is of negative curvature at point

(a, b) (as in case (iii) of Theorem 11) if part of the surface lies on one side

of the tangent plane to the surface at (a, b) and another part of the surface

lies on the other side of the tangent plane (in all open neighborhoods of

(a, b)). This is why there is no local extremum in case (iii) (consider Figure

14.40 again.) In case (iv) of Theorem 11, the surface has zero curvature
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and we cannot determine whether the surface has a local maximum, local

minimum, or saddle point at (a, b). For more details on curvature, see my

online Differential Geometry (MATH 5310) notes on 1-2. Gauss Curvature

and 1-6. The Gauss Curvature in Detail (for a result relevant to Theorem

11, see the example on pages 3 and 4 of the 1-6. The Gauss Curvature in

Detail notes).

Example. Page 826, number 6 (again).

Note. Absolute Maxima and Minima of Closed Bounded

Regions

We organize the search for the absolute extrema of a continuous function

f (x, y) on a closed and bounded region R into three steps:

1. List the interior points of R where f may have local maxima and

minima and evaluate f at these points. These are the critical points

of f .

2. List the boundary points of R where f has local maxima and minima

and evaluate f at these points. (Details to follow in the next example.)

3. Look through the lists for the maximum and minimum values of f .

These will be the absolute maximum and minimum values of f on

https://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-2.pdf
https://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-6.pdf
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R. Since absolute maxima and minima are also local maxima and

minima, the absolute maximum and minimum values of f appear

somewhere in the lists made in Steps 1 and 2.

Example. Page 827, number 32.

Note. Solving the extreme value problems with algebraic constraints on

the variables usually requires the method of Lagrange multipliers intro-

duced in the next section. But sometimes we can solve such problems

directly.

Example. Page 828, number 58.
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Note. Summary of Max-Min Tests

The extreme values of f (x, y) can occur only at

(i) boundary points of the domain of f , and

(ii) critical points (interior points where fx = fy = 0 or points where fx

or fy fails to exist).

If the first- and second-order partial derivatives of f are continuous through-

out a disk centered at a point (a, b) and fx(a, b) = fy(a, b) = 0, the nature

of f (a, b) can be tested with the Second Derivative Test:

(i) fxx < 0 and fxxfyy − f 2
xy > 0 at (a, b) ⇒ local maximum.

(ii) fxx > 0 and fxxfyy − f 2
xy > 0 at (a, b) ⇒ local minimum.

(iii) fxxfyy − f 2
xy < 0 at (a, b) ⇒ saddle point.

(iv) fxxfyy − f 2
xy = 0 at (a, b) ⇒ test is inconclusive.

Example. Page 828, number 65.

When we try to fit a line y = mx + b to a set of numerical data points

(x1, y1), (x2, y2), . . . , (xn, yn), the method of least squares to determine

the regression line is a technique which minimizes the sum of the squares

of the vertical distances from the points to the line. This means finding
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values of m and b that minimize the value of the function

w = (mx1 + b− y1)
2 + (mx2 + b− y2)

2 + · · · + (mxn + b− yn)2.

In this problem we show that the desired values of m and b are:

m =
(
∑

xk) (
∑

yk)− n
∑

xkyk

(
∑

xk)
2 − n

∑
x2

k

,

b =
1

n

(∑
yk −m

∑
xk

)
where the sums are all taken for K = 1 to k = n. This is the usual

technique encountered in an introductory statistics class.

Figures 14.48, Pages 828

Solution. We have w = (mx1 + b − y1)
2 + (mx2 + b − y2)

2 + · · · +

(mxn + b− yn)2, or using summation notation,

w(m, b) =
∑

(mxk + b− yk)
2.
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To find critical points, we consider:

∂w

∂m
=

y∑
2(mxk + b− yk)[xk] and

∂w

∂b
=

y∑
2(mxk + b− yk)[1].

Expanding, we have

∂w

∂m
=

∑
(2mx2

k + 2bxk − 2xkyk)

=
(∑

2mx2
k

)
+

(∑
2bxk

)
−

(∑
2xkyk

)
= 2m

∑
x2

k + 2b
∑

xk − 2
∑

xkyk.

and

∂w

∂b
=

∑
(2mxk + b− yk) =

(∑
2mxk

)
+

(∑
2b

)
−

(∑
2yk

)
= 2m

∑
xk + 2bn− 2

∑
yk.

Setting each partial derivative equal to 0, gives the following two equations

in the two unknowns m and b:

m
∑

x2
k + b

∑
xk =

∑
xkyk

m
∑

xk + bn =
∑

yk.

“Solving” this system of equations for m and b gives:

m =
(
∑

xk) (
∑

yk)− n
∑

xkyk

(
∑

xk)
2 − n

∑
x2

k

,

b =
1

n

(∑
yk −m

∑
xk

)
.
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(Notice that we have not “solved” the system in the usual sense, since we

only have a formula for b in terms of m.) Next, we need to check a second

partial derivative of w(m, b) at the critical point. Notice that

∂2w

∂m2
=

∂

∂m

[
∂w

∂m

]
=

∂

∂m

[
2m

∑
x2

k + 2b
∑

xk − 2
∑

xkyk

]
= 2

∑
x2

k

> 0,

and therefore, by the Second Derivative Test for Local Extreme Values,

the critical point yields a local minimum. Since there is only one critical

point, this must yield an absolute (or “global”) minimum.

Revised: 10/31/2020


