Chapter 15. Multiple Integrals

15.2. Double Integrals over General Regions

Note. Let R be a non-rectangular region in the plane. A partition of R is formed in a manner similar to rectangular regions, but we now only take rectangles which lie entirely inside region R (see Figure 15.8 below). As before, we number the rectangles and let ΔA_{k} be the area of the k th rectangle. Choose a point $\left(x_{k}, y_{k}\right)$ in the k th rectangle and compute a Riemann sum as

$$
S_{n}=\sum_{k=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k} .
$$

Again, we define the double integral of $f(x, y)$ over R as

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k}=\iint_{R} f(x, y) d A .
$$

Figure 15.8, Page 859

Figure 15.9, Page 860

Definition. When $f(x, y)$ is a positive function over a region R in the $x y$-plane, we define the volume bounded below by R and above by the surface $z=f(x, y)$ to be the double integral of f over R.

Theorem 2. Fubini's Theorem (Stronger Form)

Let $f(x, y)$ be continuous on a region R.

1. If R is defined by $x \in[a, b], g_{1}(x) \leq y \leq g_{2}(x)$, with g_{1} and g_{2} continuous on $[a, b]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

2. If R is defined by $y \in[c, d], h_{1}(y) \leq x \leq h_{2}(y)$, with h_{1} and h_{2} continuous on $[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Figures 15.10 and 15.11, Pages 860 and 861

Example. Page 866, number 20.

Note. Using Vertical Cross-Sections.

When faced with evaluating $\iint_{R} f(x, y) d A$, integrating first with respect to y and then with respect to x, do the following three steps:

1. Sketch. Sketch the region of integration and label the bounding curves.
2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the direction of increasing y. Mark the y-values where L enters and leaves. These are the y-limits of integration and are usually functions of x (instead of constants).
3. Find the x-limits of integration. Choose x-limits that include all the vertical lines through R. The integral shown below is

$$
\iint_{R} f(x, y) d A=\int_{x=0}^{x=1} \int_{y=1-x}^{y=\sqrt{1-x^{2}}} f(x, y) d y d x
$$

Using Horizontal Cross-Sections.

To evaluate the same double integral as an iterated integral with the order of integration reversed, use horizontal lines instead of vertical lines in Steps 2 and 3. The integral below is

$$
\iint_{R} f(x, y) d A=\int_{y=0}^{y=1} \int_{x=1-y}^{x=\sqrt{1-y^{2}}} f(x, y) d x d y
$$

Figures 15.14 and 15.15, Page 863

Examples. Page 866, numbers 40 and 50.

Theorem. Properties of Double Integrals.

If $f(x, y)$ and $g(x, y)$ are continuous on the bounded region R, then the following properties hold.

1. Constant Multiple: $\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A$ for any constant c
2. Sum and Difference: $\iint_{R}(f(x, y) \pm g(x, y)) d A=\iint_{A} f(x, y) d A \pm$ $\iint_{R} g(x, y) d A$
3. Domination:
(a) $\iint_{R} f(x, y) d A \geq 0$ if $f(x, y) \geq 0$ on R
(b) $\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A$ if $f(x, y) \geq g(x, y)$ on R
4. Additivity: $\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$ if R is the union of two non-overlapping regions R_{1} and R_{2}

Examples. Page 866, number 58 and Page 867, number 76.

