Chapter 15. Multiple Integrals

15.3. Area by Double Integration

Note. If we take $f(x, y)=1$ in the definition of the double integral over a region R in the preceding section, the Riemann sums reduce to

$$
S_{n}=\sum_{k=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k}=\sum_{k=1}^{n} \Delta A_{k}
$$

This is simply the sum of the areas of the small rectangles in the partition of R, and approximates what we would like to call the area of R.

Definition. The area of a closed, bounded plane region R is

$$
A=\iint_{R} d A
$$

Examples. Page 870, numbers 8 and 14.

Definition. The average value of $f(x, y)$ over region R is

$$
\frac{1}{\text { area of } R} \iint_{R} f d A
$$

Example. Page 870, number 20.

