## Chapter 15. Multiple Integrals15.4. Double Integrals in Polar Form

**Note.** Suppose that a function  $f(r, \theta)$  is defined over a region R that is bounded by the rays  $\theta = \alpha$  and  $\theta = \beta$  and the continuous curves  $r = g_1(\theta)$ and  $r = g_2(\theta)$ . Suppose also that  $0 \le g_1(\theta) \le g_2(\theta) \le a$  for every value of  $\theta$  between  $\alpha$  and  $\beta$ . Then R lies in a fanshaped region Q defined by  $\{(r, \theta) \mid r \in [0, a], \theta \in [\alpha, \beta]\}.$ 



Figure 15.21, Page 871

**Note.** We cover Q by a grid of a circular arcs and rays. The arcs are cut from circles centered at the origin, with radii  $\Delta r$ ,  $2\Delta r$ , ...,  $m\Delta r$ , where  $\Delta r = a/m$ . The rays are given by:

$$\theta = \alpha, \theta = \alpha + \Delta \theta, \theta = \alpha + 2\Delta \theta, \dots, \theta = \alpha + m'\Delta \theta = \beta$$

where  $\Delta \theta = (\beta - \alpha)/m'$ . The arcs and rays partition Q into small patches called "polar rectangles." We number the polar rectangles that lie inside R, calling their areas  $\Delta A_1, \Delta A_2, \ldots, \Delta A_n$ . We let  $(r_k, \theta_k)$  be any pont in the polar rectangle whose area is  $\Delta A_k$ . We then form the sum  $S_n = \sum_{k=1}^n f(r_k, \theta_k) \Delta A_k$ . If f is continuous throughout R, this sum will approach a limit as we refine the grid to make  $\Delta r$  and  $\Delta \theta$  for to zero. The limit is called the double integral of f over R. We define the *norm*  $\|P\|$  of this partition of the region as  $\|P\| = \max_{1 \le k \le n} \{\Delta r_k, \Delta \theta_k\}$ . In symbols,

$$\iint_R f(r,\theta) \, dA = \lim_{\|P\| \to 0} \sum_{k=1}^n f(r_k,\theta_k) \, \Delta A_k.$$



Figure 15.22, Page 872

Note. To evaluate the limit above, we need to evaluate  $\Delta A_k$  in terms of  $\Delta r$  and  $\Delta \theta$ . We choose  $r_k$  to be the average of the radii of the inner and outer arcs bounding the *k*th polar rectangle  $\Delta A_k$ . The radius of the inner arc bounding  $\Delta A_k$  is then  $r_k - (\Delta r/2)$ . The radius of the outer arc is  $r_k + (\Delta r/2)$ . The area of a wedge-shaped sector of a circle having radius *r* and angle  $\theta$  is  $A = \frac{1}{2}\theta r^2$ , as can be seen by multiplying  $\pi r^2$ , the area of the circle, by  $\theta/2\pi$ , the fraction of the circle's area contained in the wedge. So the areas of the circular sectors subtended by these arcs at the origin are

Inner radius: 
$$\frac{1}{2} \left( r_k - \frac{\Delta r_k}{2} \right)^2 \Delta \theta$$
  
Outer radius:  $\frac{1}{2} \left( r_k + \frac{\Delta r_k}{2} \right)^2 \Delta \theta$ .

Therefore,

 $\Delta A_k =$  area of large sector - area of small sector

$$= \frac{\Delta\theta}{2} \left[ \left( r_k + \frac{\Delta r}{2} \right)^2 - \left( r_k - \frac{\Delta r}{2} \right)^2 \right]$$
$$= \frac{\Delta\theta}{2} (2r_k \Delta r) = r_k \Delta r \Delta \theta.$$

Combining this result with the sum defining  $S_n$  gives

$$S_n = \sum_{k=1}^n f(r_k, \theta_k) r_k \,\Delta r \,\Delta \theta.$$

As  $||P|| \to 0$ , these sums converge to the double integral

$$\iint_R f(r,\theta) \, r \, dr \, d\theta.$$

**Note.** The procedure for finding limits of integration in rectangular coordinates also works for polar coordinates. To evaluate  $\iint_R f(r, \theta) dA$  over a region R in polar coordinates, integrating first to r and then with respect to  $\theta$  take the following steps.

- **1.** Sketch. Sketch the region and label the bounding curves.
- 2. Find the r-limits of integration. Imagine a ray L from the origin cutting through R in the direction of increasing r. Mark the r-values where L enters and leaves R. These are the r-limits of integration. They usually depend on the angle θ that L makes with the positive x-axis.
- **3.** Find the  $\theta$ -limits of integration. Find the smallest and largest  $\theta$ -values that bound R. These are the  $\theta$ -limits of integration.

**Example.** Page 876, number 6.

**Definition.** The *area* of a closed and bounded region R in the polar coordinate plane is

$$A = \iint_R r \, dr \, d\theta$$

**Example.** Page 876, number 28.

**Note.** The procedure for changing a Cartesian integral  $\iint_R f(x, y) dx dy$ into a polar integral has two steps. First substitute  $x = r \cos \theta$  and  $y = r \sin \theta$ , and replace dx dy by  $r dr d\theta$  in the Cartesian integral. Then supply the polar limits of integration for the boundary R. The Cartesian integral then becomes

$$\iint_R f(x,y) \, dx \, dy = \iint_G f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta.$$

**Example.** Page 876, number 10.

**Examples.** Page 876, numbers 38, 41.

Revised: 2/2/2020