Chapter 15. Multiple Integrals

15.4. Double Integrals in Polar Form

Note. Suppose that a function $f(r, \theta)$ is defined over a region R that is bounded by the rays $\theta=\alpha$ and $\theta=\beta$ and the continuous curves $r=g_{1}(\theta)$ and $r=g_{2}(\theta)$. Suppose also that $0 \leq g_{1}(\theta) \leq g_{2}(\theta) \leq a$ for every value of θ between α and β. Then R lies in a fanshaped region Q defined by $\{(r, \theta) \mid r \in[0, a], \theta \in[\alpha, \beta]\}$.

Figure 15.21, Page 871
Note. We cover Q by a grid of a circular arcs and rays. The arcs are cut from circles centered at the origin, with radii $\Delta r, 2 \Delta r, \ldots, m \Delta r$, where $\Delta r=a / m$. The rays are given by:

$$
\theta=\alpha, \theta=\alpha+\Delta \theta, \theta=\alpha+2 \Delta \theta, \ldots, \theta=\alpha+m^{\prime} \Delta \theta=\beta
$$

where $\Delta \theta=(\beta-\alpha) / m^{\prime}$. The arcs and rays partition Q into small patches called "polar rectangles." We number the polar rectangles that lie inside R, calling their areas $\Delta A_{1}, \Delta A_{2}, \ldots, \Delta A_{n}$. We let (r_{k}, θ_{k}) be any pont in the polar rectangle whose area is ΔA_{k}. We then form the $\operatorname{sum} S_{n}=\sum_{k=1}^{n} f\left(r_{k}, \theta_{k}\right) \Delta A_{k}$. If f is continuous throughout R, this sum will approach a limit as we refine the grid to make Δr and $\Delta \theta$ for to zero. The limit is called the double integral of f over R. We define the norm $\|P\|$ of this partition of the region as $\|P\|=\max _{1 \leq k \leq n}\left\{\Delta r_{k}, \Delta \theta_{k}\right\}$. In symbols,

$$
\iint_{R} f(r, \theta) d A=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(r_{k}, \theta_{k}\right) \Delta A_{k} .
$$

Figure 15.22, Page 872

Note. To evaluate the limit above, we need to evaluate ΔA_{k} in terms of Δr and $\Delta \theta$. We choose r_{k} to be the average of the radii of the inner and outer arcs bounding the k th polar rectangle ΔA_{k}. The radius of the inner arc bounding ΔA_{k} is then $r_{k}-(\Delta r / 2)$. The radius of the outer arc is $r_{k}+(\Delta r / 2)$. The area of a wedge-shaped sector of a circle having radius r and angle θ is $A=\frac{1}{2} \theta r^{2}$, as can be seen by multiplying πr^{2}, the area of the circle, by $\theta / 2 \pi$, the fraction of the circle's area contained in the wedge. So the areas of the circular sectors subtended by these arcs at the origin are

$$
\begin{aligned}
& \text { Inner radius: } \frac{1}{2}\left(r_{k}-\frac{\Delta r_{k}}{2}\right)^{2} \Delta \theta \\
& \text { Outer radius: } \\
& \frac{1}{2}\left(r_{k}+\frac{\Delta r_{k}}{2}\right)^{2} \Delta \theta
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\Delta A_{k}=\text { area of large sector }- \text { area of small sector } \\
=\frac{\Delta \theta}{2}\left[\left(r_{k}+\frac{\Delta r}{2}\right)^{2}-\left(r_{k}-\frac{\Delta r}{2}\right)^{2}\right] \\
=\frac{\Delta \theta}{2}\left(2 r_{k} \Delta r\right)=r_{k} \Delta r \Delta \theta .
\end{gathered}
$$

Combining this result with the sum defining S_{n} gives

$$
S_{n}=\sum_{k=1}^{n} f\left(r_{k}, \theta_{k}\right) r_{k} \Delta r \Delta \theta
$$

As $\|P\| \rightarrow 0$, these sums converge to the double integral

$$
\iint_{R} f(r, \theta) r d r d \theta
$$

Note. The procedure for finding limits of integration in rectangular coordinates also works for polar coordinates. To evaluate $\iint_{R} f(r, \theta) d A$ over a region R in polar coordinates, integrating first to r and then with respect to θ take the following steps.

1. Sketch. Sketch the region and label the bounding curves.
2. Find the r-limits of integration. Imagine a ray L from the origin cutting through R in the direction of increasing r. Mark the r-values where L enters and leaves R. These are the r-limits of integration. They usually depend on the angle θ that L makes with the positive x-axis.
3. Find the θ-limits of integration. Find the smallest and largest θ values that bound R. These are the θ-limits of integration.

Example. Page 876, number 6.

Definition. The area of a closed and bounded region R in the polar coordinate plane is

$$
A=\iint_{R} r d r d \theta
$$

Example. Page 876, number 28.

Note. The procedure for changing a Cartesian integral $\iint_{R} f(x, y) d x d y$ into a polar integral has two steps. First substitute $x=r \cos \theta$ and $y=r \sin \theta$, and replace $d x d y$ by $r d r d \theta$ in the Cartesian integral. Then supply the polar limits of integration for the boundary R. The Cartesian integral then becomes

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(r \cos \theta, r \sin \theta) r d r d \theta .
$$

Example. Page 876, number 10.

Examples. Page 876, numbers 38, 41.

