Chapter 15. Multiple Integrals15.5. Triple Integrals in Rectangular Form

Note. If F(x, y, z) is a function defined on a closed, bounded region D in space, then the integral of F over D may be defined in the following way. We partition a rectangular boxlike region containing D into rectangular cells by planes parallel to the coordinate axes. We number the cells that lie completely inside D from 1 to n in some order, the kth cell having dimensions Δx_k by Δy_k by Δz_k and volume $\Delta V_k =$ $\Delta x_k \Delta y_k \Delta z_k$. We choose a point (x_k, y_k, z_k) in each cell and form the sum $S_n = \sum_{k=1}^{n} F(x_k, y_k, z_k) \Delta V_k$. We are interested in what happens as D is partitioned by smaller and smaller cells, so that Δx_k , Δy_k , Δz_k and the norm of the partition $||P|| = \max{\{\Delta x_k, \Delta y_k, \Delta z_k\}}$ approaches zero. When a single limiting value is attained, no matter how the partitions and points (x_k, y_k, z_k) are chosen, we say that F is *integrable* over D. If F is continuous on D and D is formed from finitely many smooth surfaces joined together along finitely many smooth curves, then F is integrable. As $||P|| \to 0$, if the sums S_n approach a limits, then the limit is the *triple* integral of F over D, denoted

$$\lim_{\|P\|\to 0} S_n = \int \int \int_D F(x, y, z) \, dx \, dy \, dz.$$

Figure 15.29, Page 877

Definition. The *volume* of a closed and bounded region D in space is the triple integral of the function F(x, y, z) = 1 over D:

$$V = \int \int \int_D dV.$$

Note. Finding Limits of Integration in the Order dz dy dxTo evaluate $\int \int \int_D F(x, y, z) dV$, we illustrate how to find bounds for integrating first with repsect to z, then y, and then x.

1. Sketch. Sketch the region D along with its 'shadow' R (vertical projection) in the xy-plane. Label the upper and lower bounding surfaces

of D and the upper and lower bounding curves of R.

Page 879

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in R parallel to the z-axis. As z increases, M enters D at $z = f_1(x, y)$ and leaves at $z = f_2(x, y)$. These are the z-limits of integration.

Page 879

3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As y increases, L enters R at $y = g_1(x)$ and leaves at $y = g_2(x)$. These are the y-limits of integration.

Page 879

4. Find the x-limits of integration. Choose x-limits that include all lines through R parallel to the y-axis. These are the x-limits of integration.

In conclusion, the integral is

$$\int_{x=a}^{x=b} \int_{y=g_1(x)}^{y=g_2(x)} \int_{z=f_1(x,y)}^{z=f_2(x,y)} F(x,y,z) \, dz \, dy \, dx.$$

Of course, we can modify the order of integration by interchanging the variables. See page 879 for pictures of this.

Figure 15.30, Page 880

Examples. Page 883, number 4; page 884, number 26; page 885, numbers 38 and 42.

Definition. The average value of a function F over a region D in space is

Average value
$$= \frac{1}{\text{volume of } D} \int \int_D F \, dV.$$