Chapter 15. Multiple Integrals

15.5. Triple Integrals in Rectangular Form

Note. If $F(x, y, z)$ is a function defined on a closed, bounded region D in space, then the integral of F over D may be defined in the following way. We partition a rectangular boxlike region containing D into rectangular cells by planes parallel to the coordinate axes. We number the cells that lie completely inside D from 1 to n in some order, the k th cell having dimensions Δx_{k} by Δy_{k} by Δz_{k} and volume $\Delta V_{k}=$ $\Delta x_{k} \Delta y_{k} \Delta z_{k}$. We choose a point (x_{k}, y_{k}, z_{k}) in each cell and form the sum $S_{n}=\sum_{k=1}^{n} F\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k}$. We are interested in what happens as D is partitioned by smaller and smaller cells, so that $\Delta x_{k}, \Delta y_{k}, \Delta z_{k}$ and the norm of the partition $\|P\|=\max \left\{\Delta x_{k}, \Delta y_{k}, \Delta z_{k}\right\}$ approaches zero. When a single limiting value is attained, no matter how the partitions and points $\left(x_{k}, y_{k}, z_{k}\right)$ are chosen, we say that F is integrable over D. If F is continuous on D and D is formed from finitely many smooth surfaces joined together along finitely many smooth curves, then F is integrable. As $\|P\| \rightarrow 0$, if the sums S_{n} approach a limits, then the limit is the triple integral of F over D, denoted

$$
\lim _{\|P\| \rightarrow 0} S_{n}=\iiint_{D} F(x, y, z) d x d y d z
$$

Figure 15.29, Page 877

Definition. The volume of a closed and bounded region D in space is the triple integral of the function $F(x, y, z)=1$ over D :

$$
V=\iiint_{D} d V .
$$

Note. Finding Limits of Integration in the Order $d z d y d x$ To evaluate $\iiint_{D} F(x, y, z) d V$, we illustrate how to find bounds for integrating first with repsect to z, then y, and then x.

1. Sketch. Sketch the region D along with its 'shadow' R (vertical projection) in the $x y$-plane. Label the upper and lower bounding surfaces
of D and the upper and lower bounding curves of R.

Page 879

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in R parallel to the z-axis. As z increases, M enters D at $z=f_{1}(x, y)$ and leaves at $z=f_{2}(x, y)$. These are the z-limits of integration.

Page 879
3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As y increases, L enters R at $y=g_{1}(x)$ and leaves at $y=g_{2}(x)$. These are the y-limits of integration.

Page 879
4. Find the x-limits of integration. Choose x-limits that include all lines through R parallel to the y-axis. These are the x-limits of integration.

In conclusion, the integral is

$$
\int_{x=a}^{x=b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} \int_{z=f_{1}(x, y)}^{z=f_{2}(x, y)} F(x, y, z) d z d y d x .
$$

Of course, we can modify the order of integration by interchanging the variables. See page 879 for pictures of this.

Example. Example 1, page 880 (set up the integral).

Figure 15.30, Page 880

Examples. Page 883, number 4; page 884, number 26; page 885, numbers 38 and 42 .

Definition. The average value of a function F over a region D in space is

$$
\text { Average value }=\frac{1}{\text { volume of } D} \iiint_{D} F d V .
$$

