Chapter 15. Multiple Integrals

15.7. Triple Integrals in Cylindrical and Spherical
 Coordinates

Definition. Cylindrical coordinates represent a point P in space by ordered triples (r, θ, z) in which

1. r and θ are polar coordinates for the vertical projection of P on the $x y$-plane
2. z is the rectangular vertical coordinate.

Figure 15.42, Page 893

Note. The equations relating rectangular (x, y, z) and cylindrical (t, θ, z) coordinates are

$$
\begin{gathered}
x=r \cos \theta, y=r \sin \theta, z=z \\
r^{2}=x^{2}+y^{2}, \tan \theta=y / x
\end{gathered}
$$

Note. In cylindrical coordinates, the equation $r=a$ describes not just a circle in the $x y$-plane but an entire cylinder about the z-axis. The z axis is given by $r=0$. The equation $\theta=\theta_{0}$ describes the plane that contains the z-axis and makes an angle θ_{0} with the positive x-axis. And, just as in rectangular coordinates, the equation $z=z_{0}$ describes a plane perpendicular to the z-axis.

Figure 15.43, Page 894

Note. When computing triple integrals over a region D in cylindrical coordinates, we partition the region into n small cylindrical wedges, rather than into rectangular boxes. In the k th cylindrical wedge, r, θ and z change by $\Delta r_{k}, \Delta \theta_{k}$, and Δz_{k}, and the largest of these numbers among all the cylindrical wedges is called the norm of the partition. We define the triple integral as a limit of Riemann sums using these wedges. Thee volume of such a cylindrical wedge ΔV_{k} is obtained by taking the area ΔA_{k} of its base in the $r \theta$-plane and multiplying by the height Δz. For a point $\left(r_{k}, \theta_{k}, z_{k}\right)$ in the center of the k th wedge, we calculated in polar coordinates that $\Delta A_{k}=r_{k} \Delta r_{k} \Delta \theta_{k}$. So $\Delta V_{k}=\Delta z_{k} r_{k} \Delta r_{k} \Delta \theta_{k}$ and a Riemann sum for f over D has the form

$$
S_{n}=\sum_{k=1}^{n} f\left(r_{k}, \theta_{k}, z_{k}\right) \Delta z_{k} r_{k} \Delta r_{k} \Delta \theta_{k} .
$$

The triple integral of a function f over D is obtained by taking a limit of such Riemann sums with partitions whose norms approach zero:

$$
\lim _{\|P\| \rightarrow 0} S_{n}=\iiint_{D} f d V=\iiint_{D} f d z r d r d \theta
$$

Figure 15.44, Page 894

Example. Page 901, number 4.

How to Integrate in Cylindrical Coordinates

To evaluate $\iiint_{D} f(r, \theta, z) d V$ over a region D in space in cylindrical coordinates, integrating first with respect to z, then with respect to r, and finally with respect to θ, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the $x y$ -
plane. Label the surfaces and curves that bound D and R.

Page 895
2. Find the z-limits of integration. Draw a line M passing through a typical point (r, θ) of R parallel to the z-axis. As z increases, M enters D at $z=g_{1}(r, \theta)$ and leaves at $z=g_{2}(r, \theta)$. These are the z-limits of integration.

Page 895
3. Find the r-limits of integration. Draw a ray L through (r, θ) from the origin. The ray enters R at $r=h_{1}(\theta)$ and leaves at $r=h_{2}(\theta)$.

These are the r-limits of integration.

Page 896

4. Find the θ-limits of integration. As L sweeps across R, the angle θ it makes with the positive x-axis runs from $\theta=\alpha$ to $\theta=\beta$. These are the θ-limits if integration. The integral is

$$
\iiint_{D} f(r, \theta, z) d V=\int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_{1}(\theta)}^{r=h_{2}(\theta)} \int_{z=g_{1}(r, \theta)}^{z=g_{2}(r, \theta)} f(r, \theta, z) d z r d r d \theta .
$$

Example. Page 902, number 18.

Definition. Spherical coordinates represent a point P in space by ordered triples (ρ, ϕ, θ) in which

1. ρ is the distance from P to the origin (notice that $\rho>0$).
2. ϕ is the angle $\overrightarrow{O P}$ makes with the positive z-axis $(\phi \in[0, \pi])$.
3. θ is the angle from cylindrical coordinate $(\theta \in[0,2 \pi])$.

Figure 15.47, Page 897

Note. The equation $\rho=a$ describes the sphere of radius a centered at the origin. The equation $\phi=\phi_{0}$ describes a single cone whose vertex lies at the origin and whose axis lies along the z-axis.

Figure 15.48, Page 897

Note. The equations relating spherical coordinates to Cartesian coordinates and cylindrical coordinates are

$$
\begin{gathered}
r=\rho \sin \theta, x=r \cos \theta=\rho \sin \phi \cos \theta \\
z=\rho \cos \phi, y=r \sin \theta=\rho \sin \phi \sin \theta \\
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}}
\end{gathered}
$$

Note. When computing triple integrals over a region D in spherical coordinates, we partition the region into n spherical wedges. The size of the k th spherical wedge, which contains a point $\left(\rho_{k}, \phi_{k}, \theta_{k}\right)$, is given be the changes $\Delta \rho_{k}, \Delta \theta_{k}$, and $\Delta \phi_{k}$ in ρ, θ, and ϕ. Such a spherical wedge has one edge a circular arc of length $\rho_{k} \Delta \phi_{k}$, another edge a circular arc of length $\rho_{k} \sin \phi_{k} \Delta \theta_{k}$, and thickness $\Delta \rho_{k}$. The spherical wedge closely approximates a cube of these dimensions when $\Delta \rho_{k}, \Delta \theta_{k}$, and $\Delta \phi_{k}$ are all small. It can be shown that the volume of this spherical wedge ΔV_{k} is $\Delta V_{k}=\rho_{k}^{2} \sin \phi_{k} \Delta \rho_{k} \Delta \phi_{k} \Delta \theta_{k}$ for $\left(\rho_{k}, \phi_{k}, \theta_{k}\right)$ a point chosen inside the wedge. The corresponding Riemann sum for a function $f(\rho, \phi, \theta)$ is

$$
S_{n}=\sum_{k=1}^{n} f\left(\rho_{k}, \phi_{k}, \theta_{k}\right) \rho_{k}^{2} \sin \phi_{k} \Delta \rho_{k} \Delta \phi_{k} \Delta \theta_{k}
$$

As the norm of a partition approaches zero, and the spherical wedges get smaller, the Riemann sums have a limit when f is continuous:

$$
\lim _{\|P\| \rightarrow 0} S_{n}=\iiint_{D} f(\rho, \phi, \theta) d V=\iiint_{D} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Figure 15.51, Page 898

Example. Page 902, number 26.

How to Integrate in Spherical Coordinates

To evaluate $\iiint_{D} f(\rho, \phi, \theta) d V$ over a region D in space in spherical coordinates, integrating first with respect to ρ, then with respect to ϕ, and finally with respect to θ, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the $x y$ -
plane. Label the surfaces and curves that bound D and R.

Page 899
2. Find the ρ-limits of integration. Draw a ray M from the origin through D making an angle ϕ with the positive z-axis. Also draw the projection of M on the $x y$-plane (call the projection L). The ray L makes an angle θ with the positive x-axis. As ρ increases, M enters D at $\rho=g_{1}(\phi, \theta)$ and leaves at $\rho=g_{2}(\phi, \theta)$. These are the ρ-limits
of integration.

Page 899
3. Find the ϕ-limits of integration. For any given θ, the angle ϕ that M makes with the z-axis runs from $\phi=\phi_{\min }$ to $\phi=\phi_{\max }$. These are the ϕ-limits of integration.
4. Find the θ-limits of integration. The ray L sweeps over R as θ runs from α to β. These are the θ-limits of integration. The integral is

$$
\iiint_{D} f(\rho, \phi, \theta) d V=\int_{\theta=\alpha}^{\theta=\beta} \int_{\phi=\phi_{\min }}^{\phi=\phi_{\max }} \int_{\rho=g_{1}(\phi, \theta)}^{\rho=g_{2}(\phi, \theta)} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

Example. Page 903, number 34.

Note. In summary, we have the following relationships.
Cylindrical to Spherical to Spherical to
Rectangular Rectangular Cylindrical

$$
\begin{array}{lll}
x=r \cos \theta & x=\rho \sin \phi \cos \theta & r=\rho \sin \phi \\
y=r \sin \theta & y=\rho \sin \phi \sin \theta & z=\rho \cos \phi \\
z=z & z=\rho \cos \theta & \theta=\theta
\end{array}
$$

In terms of the differential of volume, we have

$$
d V=d x d y d z=d z r d r d \theta=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

Examples. Page 903, number 46. Page 904, number 54.

