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Chapter 13. Vector-Valued Functions and

Motion in Space

13.1. Curves in Space and Their Tangents

Note. When a particle moves through space during a time interval I , we

think of the particle’s coordinates as functions defined on I :

x = f (t), y = g(t), z = h(t), t ∈ I.

The points (x, y, z) = (f (t), g(t), h(t)), t ∈ I , make up the curve in

space that we call the particle’s path. The above equations parametrize

the curve. A curve in space can also be represented in vector form. The

vector

r(t) = ~OP = f (t)i + g(t)j + h(t)k

from the origin to the particle’s position P (f (t), g(t), h(t)) at time t.

Figure 13.1, page 725
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Example. Page 726, Example 1. Consider the vector function r(t) =

(cos t)i + (sin t)j + tk. This curve is a helix.

Figure 13.3, page 726

Definition. Let r(t) = f (t)i+g(t)j+h(t)k be a vector function defined

on an open interval containing t0 except possibly at t0 itself, and let L a

vector. We say that r has limit L as t approaches t0 and write lim
t→t0

r(t) = L

if, for every number ε > 0, there exists a corresponding number δ > 0

such that

|r(t) − L| < ε whenever 0 < |t − t0| < δ.

Definition. A vector function r(t) is continuous at a point t = t0

in its domain if limt→t0
r(t) = r(t0). The function is continuous if it is

continuous at every point in its domain.
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Definition. The vector function r(t) = f (t)i + g(t)j + h(t)k has a

derivative at t if f , g, and h have derivatives at t. The derivative is the

vector function

r′(t) =
dr

dt
= lim

∆t→0

r(t + ∆t) − r(t)

∆t
=

df

dt
i +

dg

dt
i +

dh

dt
k.

The curve traced by r is smooth if dr/dt is continuous and never 0, that is,

if f , g, and h have continuous first derivatives that are not simultaneously

0.

Figure 13.5, page 728

Definition. The vector r′(t), when different from 0, is defined to be the

vector tangent to the curve at P . The tangent line to the curve at a point

(f (t0), g(t0), h(t0)) is defined to the the line through the point parallel to

r′(t0).
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Example. Page 732, number 22.

Definition. If r is the position vector of a particle moving along a smooth

curve in space, then v(t) =
dr

dt
is the particle’s velocity vector, tangent

to the curve. At any time, the direction of v is the direction of motion,

the magnitude of v is the particle’s speed, and the derivative a = dv/dt,

when it exists, is the particles acceleration vector. In summary,

1. Velocity is the derivative of position: v =
dr

dt
.

2. Speed is the magnitude of velocity: Speed = |v|.

3. Acceleration is the derivative of velocity: a =
dv

dt
=

d2r

dt2
.

4. The unit vector v/|v| is the direction of motion at time t.

Example. Page 732, number 8.

Theorem. Differentiation Rules for Vector Functions.

Let u and v be differentiable vector functions of t, C a constant vector, c

any scalar, and f any differentiable scalar function.

1. Constant Function Rule:
d

dt
[C] = 0.

2. Scalar Multiple Rules:
d

dt
[cu(t)] = cu′(t).

d

dt
[f (t)u(t)] = [f ′(t)](u(t)) + (f (t))[u′(t)].
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3. Sum Rule:
d

dt
[u(t) + v(t)] = u′(t) + v′(t).

4. Difference Rule:
d

dt
[u(t) − v(t)] = u′(t) − v′(t).

5. Dot Product Rule:
d

dt
[u(t) · v(t)] = [u′(t)] · (v(t)) + (u(t)) · [v′(t)].

6. Cross Product Rule:
d

dt
[u(t)×v(t)] = [u′(t)]×(v(t))+(u(t))×[v′(t)].

7. Chain Rule:
d

dt
[u(f (t))] = f ′(t)u′(f (t)).

Proof of the Dot Product Rule.

Suppose that u = u1(t)i+u2(t)j+u3(t)k and v = v1(t)i+v2(t)j+v3(t)k.

Then

d

dt
[u · v] =

d

dt
[u1v1 + u2v2 + u3v3]

= [u′
1](v1) + (u1)[v

′
1] + [u′

2](v2) + (u2)[v
′
2] + [u′

3](v3) + (u3)[v
′
3]

= [u′
1](v1) + [u′

2](v2) + [u′
3](v3) + (u1)[v

′
1] + (u2)[v

′
2] + (u3)[v

′
3]

= u′ · v + u · v′.

Proof of the Cross Product Rule.

This proof resembles the Product Rule from Calculus 1. By definition,

d

dt
[u × v] = lim

h→0

u(t + h) × v(t + h) − u(t) × v(t)

h
.

This leads to

d

dt
[u× v] = lim

h→0

u(t + h) × v(t + h) − u(t) × v(t)

h
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= lim
h→0

u(t + h) × v(t + h) − u(t) × v(t + h) + u(t) × v(t + h) − u(t) × v(t)

h

= lim
h→0





u(t + h)− u(t)

h
× v(t + h) + u(t) ×

v(t + h)− v(t)

h





= lim
h→0

u(t + h) − u(t)

h
× lim

h→0

v(t + h) + lim
h→0

u(t) × lim
h→0

v(t + h) − v(t)

h

= [u′(t)] × (v(t)) + (u(t)) × [v′(t)].

We have used the fact that the limit of a product is the product of the limits

(Exercise 32) and that v is continuous and hence lim
h→0

v(t + h) = v(t).

Example. Page 732, numbers 28a.


