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Chapter 13. Vector-Valued Functions and
Motion in Space
13.5. Tangential and Normal Components of

Acceleration

Note. If we let r(¢) be a position function and interpret this as the move-
ment of a particle as a function of time, then the unit tangent vector T
represents the direction of travel of the particle and the principal unit
vector N indicates the direction the path is turning into. Since both of
these vectors are unit vectors, it is their direction that contains informa-
tion. For any fixed time ¢, acceleration is a linear combination of T and

N: a=a7T + ayN for some ar and ay.
Definition. Define the unit binormal vector as B = T x N.

Note. Notice that since T and N are orthogonal unit vectors, then B
is in fact a unit vector. Changes in vector B reflect the tendency of the
motion of the particle with position function r(¢) to ‘twist” out of the
plane created by vectors T and N. Also notice that vectors T, N, and

B define a moving right-hand vector “frame.” This frame is called the
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Frenet frame or the TNB frame.
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Figure 13.23, page 752

Note. As commented above, we can write a = a7T 4+ ayN for some ar

and ay. We want to find formulae for ap and ay. By the Chain Rule,
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Definition. If the acceleration vector is written as a = a;T + ayN,

then

2 d 2
ar = % = % [|v|] and ay = K (d—j) = k|v|?

are the tangential and normal scalar components of acceleration. (Recall
that s is arclength and so ds/dt is the rate at which arclength is traversed

with respect to time. That is, ds/dt is speed: ds/dt = |v]|.)

Figure 13.25, page 753

Note. If we are given the position function r(t), then ar is easy to find

(just calculate 2
SU calculate — ||—
4 W | dt

to find curvature x. But there is a quicker way. Since a = a7T + ayN

). But the computation of ay seems to require us

and T and N are orthogonal, then |a|* = a3 + a%. Therefore we can

solve to ay and find that: ay = \/|al? — ar.
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Example. Page 756, number 8.

Note. We have commented that changes in the binormal vector B reflect
the tendency of the motion of the particle with position function r(¢) to
‘twist” out of the plane created by vectors T and N. This twisting is called

torsion. We are interested in how B changes with respect to arclength s:

dB dTxN] T dIN dIN dIN
— T NALT x = o i
ds ds dsx * de O+Txds Txds

since dT'/ds is parallel to N.

We need a quick result concerning vector functions of constant mag-
nitude (see page 731): Lemma. If r(¢) is a vector function such that
lr(t)| = ¢ for some constant ¢, then r(t) and r'(¢) are orthogonal. The

proof is computational:

2r'(t) - r(t) = 0.

Since r'(t) - r(t) = 0, the vectors are orthogonal.
Returning to B, we know from above that dB/ds is orthogonal to T

since it is the cross product of vector T and another vector. Since B
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is always a unit vector, then by Lemma dB/ds is also orthogonal to B.

Therefore dB/ds must be a multiple of vector N. We define the torsion

dB
7 with the formula — = —7IN. We can compute 7 as follows:
S
dB
ENZ_TNN:_T(l):_T
dB
and so T = o N. As the book states, the curvature k = |dT /ds| can
S

be thought of as the rate at which the normal plane turns as the point P
moves along its path. The torsion 7 = —(dB/ds) - N is the rate at which
the osculating plane turns about T as P moves along the curve. “Torsion
measures how the curve twists. ...In a more advanced course it can be
shown that a space curve is a helix if and only if it has constant nonzero

curvature and constant nonzero torsion.” [Smiley Face!]
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Figure 13.28, page 755
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Note. Consider a position function r(t) = z(t)i + y(t)j + z(t)k. It can
be shown (“in more advanced texts”) that torsion can be computed as

" vxap

where v X a # 0 and the dots indicate (as is tradition in physics) deriva-
tives with respect to time t: & = dz/dt. So the first row of the matrix
consists of the components of velocity r'(t) = v, the second row consists
of components of acceleration r”(t) = a and the third row consists of

components of jerk r'(¢).
Examples. Page 757, numbers 14 and 26.

Note. In summary, we have the following formulae:

Position: r(t) =r

Unit tangent vector: T = @E& =

v
v

dT/dt

Principal unit normal vector: N = 1T /di]

Binormal vector: B =T x N

Curvature: K = ’%’ = |‘|’VX|§ L (see Page 756, number 21)
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Torsion: 7 = —E N = W = —m (E . N) (See Page 757,
number 28)

Tangential and normal scalar components of acceleration:

A =arT + ayN

where ap = 4 [|v|] and ay = s[v|* = \/|a? — ar.

Note. For an alternate treatment of this same material, see Section 1-1

of my notes for Differential Geometry (MATH 5510) at:
http://faculty.etsu.edu/gardnerr/5310/notes.htm.

Section 1-2 of these notes deals with the curvature of surtaces.



