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Chapter 13. Vector-Valued Functions and

Motion in Space

13.5. Tangential and Normal Components of

Acceleration

Note. If we let r(t) be a position function and interpret this as the move-

ment of a particle as a function of time, then the unit tangent vector T

represents the direction of travel of the particle and the principal unit

vector N indicates the direction the path is turning into. Since both of

these vectors are unit vectors, it is their direction that contains informa-

tion. For any fixed time t, acceleration is a linear combination of T and

N: a = aTT + aNN for some aT and aN .

Definition. Define the unit binormal vector as B = T × N.

Note. Notice that since T and N are orthogonal unit vectors, then B

is in fact a unit vector. Changes in vector B reflect the tendency of the

motion of the particle with position function r(t) to ‘twist’ out of the

plane created by vectors T and N. Also notice that vectors T, N, and

B define a moving right-hand vector “frame.” This frame is called the



13.5 Tangential and Normal Components of Acceleration 2

Frenet frame or the TNB frame.

Figure 13.23, page 752

Note. As commented above, we can write a = aTT + aNN for some aT

and aN . We want to find formulae for aT and aN . By the Chain Rule,

v =
dr

dt
=

dr

ds

ds

dt
= T

ds

dt
.

So acceleration is

a =
dv

dt
=

d

dt



T
ds

dt



 =
d2s

dt2
T +

ds

dt

dT

dt

=
d2s

dt2
T +

ds

dt





dT

ds

ds

dt



 =
d2s

dt2
T +

ds

dt



κN
ds

dt





=
d2s

dt2
T + κ





ds

dt





2

N.

(Recall that
dT

ds
= κN.)
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Definition. If the acceleration vector is written as a = aTT + aNN,

then

aT =
d2s

dt2
=

d

dt
[|v|] and aN = κ





ds

dt





2

= κ|v|2

are the tangential and normal scalar components of acceleration. (Recall

that s is arclength and so ds/dt is the rate at which arclength is traversed

with respect to time. That is, ds/dt is speed: ds/dt = |v|.)

Figure 13.25, page 753

Note. If we are given the position function r(t), then aT is easy to find

(just calculate
d

dt





∣

∣

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

∣

∣



). But the computation of aN seems to require us

to find curvature κ. But there is a quicker way. Since a = aTT + aNN

and T and N are orthogonal, then |a|2 = a2
T + a2

N . Therefore we can

solve to aN and find that: aN =
√

|a|2 − aT .
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Example. Page 756, number 8.

Note. We have commented that changes in the binormal vector B reflect

the tendency of the motion of the particle with position function r(t) to

‘twist’ out of the plane created by vectors T and N. This twisting is called

torsion. We are interested in how B changes with respect to arclength s:

dB

ds
=

d[T × N]

ds
=

T

ds
× N + T ×

dN

ds
= 0 + T ×

dN

ds
= T ×

dN

ds

since dT/ds is parallel to N.

We need a quick result concerning vector functions of constant mag-

nitude (see page 731): Lemma. If r(t) is a vector function such that

|r(t)| = c for some constant c, then r(t) and r′(t) are orthogonal. The

proof is computational:

r(t) · r(t) = |r(t)|2 = c2

d

dt
[r(t) · r(t)] =

d

dt
[c2]

r′(t) · r(t) + r(t) · r′(t) = 0

2r′(t) · r(t) = 0.

Since r′(t) · r(t) = 0, the vectors are orthogonal.

Returning to B, we know from above that dB/ds is orthogonal to T

since it is the cross product of vector T and another vector. Since B
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is always a unit vector, then by Lemma dB/ds is also orthogonal to B.

Therefore dB/ds must be a multiple of vector N. We define the torsion

τ with the formula
dB

ds
= −τN. We can compute τ as follows:

dB

ds
· N = −τN · N = −τ (1) = −τ

and so τ = −
dB

ds
·N. As the book states, the curvature κ = |dT/ds| can

be thought of as the rate at which the normal plane turns as the point P

moves along its path. The torsion τ = −(dB/ds) ·N is the rate at which

the osculating plane turns about T as P moves along the curve. “Torsion

measures how the curve twists. . . . In a more advanced course it can be

shown that a space curve is a helix if and only if it has constant nonzero

curvature and constant nonzero torsion.” [Smiley Face!]

Figure 13.28, page 755
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Note. Consider a position function r(t) = x(t)i + y(t)j + z(t)k. It can

be shown (“in more advanced texts”) that torsion can be computed as

τ =

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

ẋ ẏ ż

ẍ ÿ z̈

...
x

...
y ...

z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|v × a|2

where v× a 6= 0 and the dots indicate (as is tradition in physics) deriva-

tives with respect to time t: ẋ = dx/dt. So the first row of the matrix

consists of the components of velocity r′(t) = v, the second row consists

of components of acceleration r′′(t) = a and the third row consists of

components of jerk r′′′(t).

Examples. Page 757, numbers 14 and 26.

Note. In summary, we have the following formulae:

Position: r(t) = r

Unit tangent vector: T = r′(t)
|r′(t)| = v

|v|

Principal unit normal vector: N = dT/dt
|dT/dt|

Binormal vector: B = T × N

Curvature: κ =
∣

∣

∣

∣

dT
ds

∣

∣

∣

∣

= |v×a|
|v|3

(see Page 756, number 21)
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Torsion: τ = −
dB

ds
· N =

∣
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∣
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∣

∣
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∣

∣
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∣
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ẋ ẏ ż

ẍ ÿ z̈
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∣
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∣
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∣

∣

∣

∣

∣

∣

|v × a|2
= −

1

|v|





dB

dt
· N



 (see Page 757,

number 28)

Tangential and normal scalar components of acceleration:

A = aTT + aNN

where aT = d
dt

[|v|] and aN = κ|v|2 =
√

|a2 − aT .

Note. For an alternate treatment of this same material, see Section 1-1

of my notes for Differential Geometry (MATH 5510) at:

http://faculty.etsu.edu/gardnerr/5310/notes.htm.

Section 1-2 of these notes deals with the curvature of surfaces.


