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Chapter 15. Multiple Integrals

15.6. Moments and Centers of Mass

Note. If δ(x, y, z) is the density of an object occupying a region D in

space, the integral of δ over D gives the mass of the object. The first

moment of a solid region D about a coordinate plane is defined as the

triple integral over D of the distance from a point (x, y, z) in D to the

plane multiplied by the density of the solid at that point. For instance,

the first moment about the yz-plane is the integral

Myz =

∫ ∫ ∫
D

xδ(x, y, z) dV.

The center of mass is found from the first moments. For instance, the

x-coordinate of the center of mass is x = Myz/M . To summarize, we

have:

THREE-DIMENSIONAL SOLID

Mass: M =

∫ ∫ ∫
D

δ dV

First moments about the coordinate planes:

Myz =

∫ ∫ ∫
D

x δ dV, Mxz =

∫ ∫ ∫
D

y δ dV, Mxy =

∫ ∫ ∫
D

z δ dV
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Center of mass:

x =
Myz

M
, y =

Mxz

M
, z =

Mxy

M

TWO-DIMENSIONAL PLATE

Mass: M =

∫ ∫
R

δ dA

First moments: My =

∫ ∫
R

x δ dA, Mx =

∫ ∫
R

y δ dA

Center of mass: x =
My

M
, y =

Mx

M
.

Note. When the density of a solid object or plate is constant, the center

of mass is called the centroid of the object. To find a centroid, we set δ

equal to 1 and proceed to find x, y, and z by dividing first moments by

masses.

Examples. Page 891, numbers 4 and 16a.

Note. A object’s moments tell us about balance and about the torque

the object experiences about different axes in a gravitational field. If the

object is a rotating shaft, however, we are more likely to be interested

in how much energy is stored in the shaft or about how much energy is

generated by a shaft rotating at a particular angular velocity. This is

where the second moment or moment of inertia comes in.
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Note. Think of partitioning the shaft mentioned above into small blocks

of mass ∆mk and let rk denote the distance from the kth block’s center

of mass to the axis of rotation. If the shaft rotates at a constant angular

velocity of ω = dθ/dt radians per second, the block’s center of mass will

trace its orbit at a linear speed of

vk =
d

dt
[rkθ] = rk

dθ

dt
= rkω.

The block’s kinetic energy will be approximately

1

2
∆mkv

2
k =

1

2
∆mk(rkω)2 =

1

2
ω2r2

k∆mk.

The kinetic energy of the shaft will be approximately

∑ 1

2
ω2r2

k∆mk.

The integral approached by these sums as the shaft is partitioned into

smaller and smaller blocks gives the shaft’s kinetic energy:

KEshaft =

∫
1

2
ω2r2 dm =

1

2
ω2

∫
r2 dm.

The factor

I =

∫
r2 dm

is the moment of inertia of the shaft about its axis of rotation, and we

see from the above equation that the shaft’s kinetic energy is

KEshaft =
1

2
Iω2.
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Note. The shaft’s moment of inertia is analogous to a linearly moving

object’s mass. What makes the shaft hard to start or stop is its moment

of inertia. The moment of inertia depends on the mass of the shaft and

on its distribution of mass. Mass that is farther away from the axis of

rotation contributes more to the moment of inertia.

Figure 15.37, Page 888

Note. If r(x, y, z) is the distance from the point (x, y, z) in D to a line

L, then the moment of inertia of the mass ∆mk = δ(xk, yk, zk)∆Vk about

the line L is approximately ∆Ik = r2(xk, yk, zk)∆mk. The moment of

inertia about L of the entire object is

IL = lim
‖P ‖→0

n∑
k=1

∆Ik = lim
‖P ‖→0

n∑
k=1

r2(xk, yk, zk)δ(xk, ykzk)∆Vk =

∫ ∫ ∫
D

r2δ dV.

If L is the x-axis, then r2 = y2 + z2 and

Ix =

∫ ∫ ∫
D

(y2 + z2)δ(x, y, z) dV.

Similarly, if L is the y-axis or z-axis we have

Iy =

∫ ∫ ∫
D

(x2+z2)δ(x, y, z) dV and Iz =

∫ ∫ ∫
D

(x2+y2)δ(x, y, z) dV.
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Examples. Page 892, number 22; page 893, number 32.

Note. We also have and define the following moments:

For Two-Dimensional Plates:

About the x-axis: Ix =

∫ ∫
R

y2δ dA

About the y-axis: Iy =

∫ ∫
R

x2δ dA

About the line L: IL =

∫ ∫
R

r2(x, y)δ dA

About the origin (polar moment): I0 =

∫ ∫
R

(x2 + y2)δ dA = Ix + Iy.

Example. Page 891, number 16.

Note. The stiffness of the beam is a constant times I , the moment of

inertia of a typical cross-section of the beam about the beam’s longitudinal

axis. The greater the value of I , the stiffer the beam and the less it will

bend under a given load. That is why we use I-beams instead of beams

whose cross-sections are square. The flanges at the top and bottom of the

beam hold most of the beam’s mass away from the longitudinal axis to
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increase the value of I .

Figure 15.41, Page 891


