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Chapter 15. Multiple Integrals
15.7. Triple Integrals in Cylindrical and Spherical
Coordinates

Definition. Cylindrical coordinates represent a point P in space by

ordered triples (7, , z) in which

1. r and 6 are polar coordinates for the vertical projection of P on the

xy-plane

2. z is the rectangular vertical coordinate.

Figure 15.42, Page 893
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Note. The equations relating rectangular (z, y, z) and cylindrical (¢, 6, 2)
coordinates are
x=rcosf, y=rsinf, z ==z

r? =2 + 9% tanf = y/x.

Note. In cylindrical coordinates, the equation » = a describes not just
a circle in the zy-plane but an entire cylinder about the z-axis. The z-
axis is given by r = 0. The equation # = 6, describes the plane that
contains the z-axis and makes an angle 6, with the positive xz-axis. And,
just as in rectangular coordinates, the equation z = zy describes a plane

perpendicular to the z-axis.
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Figure 15.43, Page 894
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Note. When computing triple integrals over a region D in cylindrical
coordinates, we partition the region into n small cylindrical wedges, rather
than into rectangular boxes. In the kth cylindrical wedge, r, # and z
change by Ary, Afg, and Az, and the largest of these numbers among
all the cylindrical wedges is called the norm of the partition. We define
the triple integral as a limit of Riemann sums using these wedges. Thee
volume of such a cylindrical wedge AV} is obtained by taking the area
AA; of its base in the rf-plane and multiplying by the height Az. For
a point (7, Oy, z;) in the center of the kth wedge, we calculated in polar
coordinates that AA;, = r.AriA0.. So AV = AzpriAriAG, and a
Riemann sum for f over D has the form

Sn = Z f(?“k, 9;{;, Z;{;) AZ]{; T A?“k AQ;{;
k=1

The triple integral of a function f over D is obtained by taking a limit of

such Riemann sums with partitions whose norms approach zero:
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Figure 15.44, Page 894

Example. Page 901, number 4.

How to Integrate in Cylindrical Coordinates

To evaluate / / / f(r,0,z)dV over a region D in space in cylindrical
D

coordinates, integrating first with respect to z, then with respect to r, and

finally with respect to 6, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-
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plane. Label the surfaces and curves that bound D and R.

Z

r=hy0)

Page 895

2. Find the z-limits of integration. Draw a line M passing through a
typical point (r,0) of R parallel to the z-axis. As z increases, M
enters D at z = g1(r,0) and leaves at z = go(r,0). These are the

z-limits of integration.
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3. Find the r-limits of integration. Draw a ray L through (r, ) from
the origin. The ray enters R at r = hy(#) and leaves at r = hy(6).

These are the r-limits of integration.
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4. Find the 0-limits of integration. As L sweeps across R, the angle 6

it makes with the positive z-axis runs from 6 = a to § = (3. These

are the #-limits if integration. The integral is
r=ha(60)

0=5 z2=go(r,0)
///f(r,ﬁ,z)d\/:/ / f(r,0,z)dzrdrdb.
D 0=« r=h1(0) z=q1(r,0)

Example. Page 902, number 18.
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Definition. Spherical coordinates represent a point P in space by or-

dered triples (p, ¢, @) in which
1. p is the distance from P to the origin (notice that p > 0).
2. ¢ is the angle OP makes with the positive z-axis (¢ € [0, 7]).

3. 0 is the angle from cylindrical coordinate (6 € [0, 27]).

Figure 15.47, Page 897
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Note. The equation p = a describes the sphere of radius a centered at
the origin. The equation ¢ = ¢, describes a single cone whose vertex lies

at the origin and whose axis lies along the z-axis.

f{b = d’g.
p and 6 vary
Pla, by, ty)

p=a
¢ and 6 vary

6 = 90.
p and ¢ vary

Figure 15.48, Page 897

Note. The equations relating spherical coordinates to Cartesian coordi-

nates and cylindrical coordinates are
r = psinf, x =rcost = psin pcosh,

z=pcos¢p, y=rsinf = psin¢sinb,

p=a2+y2+22=Vr2+ 22
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Note. When computing triple integrals over a region D) in spherical
coordinates, we partition the region into n spherical wedges. The size of
the kth spherical wedge, which contains a point (py, ¢r, Ox), is given be
the changes Apy, Ay, and A¢y in p, 6, and ¢. Such a spherical wedge
has one edge a circular arc of length ppA¢y, another edge a circular arc
of length py sin ¢ A6, and thickness Ap,.. The spherical wedge closely
approximates a cube of these dimensions when Ap., A6y, and A¢; are
all small. It can be shown that the volume of this spherical wedge AV}
is AVy = p2 sin ¢pAprAgrp Ay for (pg, ¢, O)) a point chosen inside the
wedge. The corresponding Riemann sum for a function f(p, ¢, ) is

Su =" f(pr: & Ok)pi sin ¢ Apy Ay Aby.
k=1

As the norm of a partition approaches zero, and the spherical wedges get

smaller, the Riemann sums have a limit when f is continuous:

JLHEOS”:///Df<p’¢’9)dvz///Df(p,cb,ﬁ)p2singbdpd¢d9.
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Figure 15.51, Page 898

Example. Page 902, number 26.

How to Integrate in Spherical Coordinates

To evaluate / / / f(p,@,0)dV over a region D in space in spherical
D

coordinates, integrating first with respect to p, then with respect to ¢,

and finally with respect to 6, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-
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plane. Label the surfaces and curves that bound D and R.

Z

L p = gxcd. 0)

Page 899

2. Find the p-limits of integration. Draw a ray M from the origin
through D making an angle ¢ with the positive z-axis. Also draw the
projection of M on the zy-plane (call the projection L). The ray L
makes an angle 6 with the positive z-axis. As p increases, M enters

D at p = g1(¢,0) and leaves at p = go(¢, #). These are the p-limits
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of integration.

Page 899

3. IFind the ¢-limits of integration. For any given 6, the angle ¢ that
M makes with the z-axis runs from ¢ = ¢piy t0 @ = Pmax. These

are the ¢-limits of integration.

4. Find the 0-limits of integration. The ray L sweeps over R as 6 runs

from a to 3. These are the 6-limits of integration. The integral is

9:6 ¢:¢max p292(¢59) 9 .
/ / / F(p.6.6)dV = / / F(p, 6, 6)% sin & dp o> db.
D O=a Jo=bmn o p=g1(¢,0)

Example. Page 903, number 34.
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Note. In summary, we have the following relationships.

Cylindrical to Spherical to Spherical to

Rectangular Rectangular Cylindrical

x =rcosb x = psingcosf r=psing
y =rsinf y = psingsinf 2z = pcos o
2=z 2= pcost 0=20

In terms of the differential of volume, we have

dV =drdydz = dzrdrdf = p*sin¢ dpdeo db.

Examples. Page 903, number 46. Page 904, number 54.



