Section 2.2. Rules for Manipulating Vectors

"Definition." The *sum* of two vectors is determined by placing them "tail" to "head":

Note. "Clearly" $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ and $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.

Note. We denote the magnitude of \vec{u} as $|\vec{u}|$.

Definition. We define a scalar a times a vector \vec{u} , $a\vec{u}$, as the vector of magnitude $|a||\vec{u}|$ in (1) the same direction as \vec{u} if $a \ge 0$, and (2) in the opposite direction of \vec{u} if a < 0.

Note. For vector subtraction we have:

$$\vec{u} - \uparrow = \vec{u} + \downarrow = \uparrow = \vec{u} - \vec{v}$$

Definition. A *unit vector* is a vector of length 1.

Note. For any nonzero vector \vec{u} , $\frac{1}{|\vec{u}|}\vec{u}$ is a unit vector in the same direction as \vec{u} .

Note. A vector can be broken into *components* of which it is a sum.

Note. You may need the following to work the homework problems:

1. Law of Sines. Every triangle satisfies the following:

2. Law of Cosines. Every triangle satisfies the following:

Example. Page 25 Number 2.9.

Revised: 9/25/2018