2.5. Dot Products

Section 2.5. Dot Products

Definition. The dot product of vectors \vec{u} and \vec{v} is a scalar

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

where θ is the angle between \vec{u} and \vec{v} .

Note. The dot product satisfies:

$$\mathbf{1.} \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u},$$

2.
$$a(\vec{u} \cdot \vec{v}) = (a\vec{u}) \cdot \vec{v} = \vec{u} \cdot (a\vec{v})$$
, and

3.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
.

Note. Since \hat{i} , \hat{j} , and \hat{k} are mutually orthogonal:

$$\hat{\imath} \cdot \hat{\imath} = 1$$
 $\hat{\imath} \cdot \hat{\jmath} = 0$ $\hat{\imath} \cdot \hat{k} = 0$ $\hat{\jmath} \cdot \hat{\jmath} = 1$ $\hat{\jmath} \cdot \hat{k} = 0$ $\hat{k} \cdot \hat{k} = 1$

From these properties, it follows that

$$\vec{u} \cdot \vec{v} = (u_x \hat{i} + u_y \hat{j} + u_z \hat{k}) \cdot (v_x \hat{i} + v_y \hat{j} + v_z \hat{k}) = u_x v_x + u_y v_y + u_z v_z.$$

2.5. Dot Products

Note. We break a vector into components parallel to and perpendicular to a given line. Let \hat{e} be a unit vector in the direction of line L. The vector \vec{u} can be decomposed as follows:

Example. Page 66 Number 2.121. HINT: Find point A using vectors, find \vec{T} and project onto DC.

Revised: 9/25/2018