Section 4.2. The Moment Vector

Definition. Consider a force \vec{F} (with a line of action) and a point P. The moment of \vec{F} about point P is $\vec{M}_P = \vec{r} \times \vec{F}$ where \vec{r} is a position vector from P to any point on the line of action of \vec{F} .

Note. $|\vec{M}_P| = |\vec{r}| |\vec{F}| \sin \theta$ where θ is the angle between \vec{r} and \vec{F} . The perpendicular distance from P to the line of action of \vec{F} is $D = |\vec{r}| \sin \theta$, so $|\vec{M}_P| = D|\vec{F}|$ (as in Section 4.1):

Note. If \vec{r} and $\vec{r'}$ are vectors from P to the line of action of \vec{F} , then $\vec{r} = \vec{r'} + \vec{u}$ where \vec{u} is a vector along the line of action of \vec{F} and

$$\vec{r} \times \vec{F} = \vec{r} \times \vec{F} + \underbrace{\vec{u} \times \vec{F}}_{\vec{0}} = (\vec{r} + \vec{u}) \times \vec{F} = \vec{r}' \times \vec{F}.$$

Note. The positive or negative sense of a moment is reflected in the right hand rule for $\vec{r} \times \vec{F}$ (see page 139).

Theorem (Varignon's). Let $\vec{F_1}, \vec{F_2}, \ldots, \vec{F_N}$ be a system of forces whose lines of action intersect at point Q. Then the moment of the system about a point P is

$$(\vec{r}_{PQ} \times \vec{F}_1) + (\vec{r}_{PQ} \times \vec{F}_2) + \dots + (\vec{r}_{PQ} \times \vec{F}_N) = \vec{r}_{PQ} \times (\vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_N).$$

Example. Page 150 Number 4.69.

Revised: 9/26/2018