Section 4.3. Moment of a Force About a Line

Definition. The moment of \vec{F} about a line L is the component of \vec{M}_P parallel to L (where P is an arbitrary point on L; see Figure 4.18, page 153). If \hat{e} is a unit vector along L, then the moment about L is

$$\vec{M}_L = (\hat{e} \cdot \vec{M}_p)\hat{e} = (\hat{e} \cdot \vec{r} \times \vec{F})\hat{e}$$

where \vec{r} is a vector from L to the line of a action of \vec{F} .

Figure 4.18. (a) The line L and force \mathbf{F} . (b) \mathbf{M}_p is the moment of \mathbf{F} about any point P on L. (c) The component \mathbf{M}_L is the moment of \mathbf{F} about L. (d) The unit vector \mathbf{e} along L.

Note. If $\hat{e} \cdot \vec{M}_P$ is positive, \vec{M}_L points in the direction of \hat{e} , and if $\hat{e} \cdot \hat{M}_P$ is negative, \vec{M}_L points in the direction opposite to \hat{e} .

Note. The product $\hat{e} \cdot \vec{r} \times \vec{F}$ is called a *scalar triple product* (or "mixed triple product") and can be calculated as

$$\hat{e} \cdot \vec{r} \times \vec{F} = \begin{vmatrix} e_x & e_y & e_z \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}.$$

Example. Page 164 Number 4.106.

Revised: 9/26/2018