Chapter 9. Friction Section 9.1. Theory of Dry Friction

Note. If an object of weight w sits on a horizontal surface and a force \vec{F} is applied horizontally, then for small values of F, the object does not move due to frictional forces (this means there is a force \vec{f} due to friction which balances \vec{F}).

Note. In the "theory of dry friction" (or Coulomb friction) we assume that the force f above can be as large as $f = \mu_s N$ where N is the normal component of the contact force (N = w is the surface is horizontal) and μ_s is the *coefficient of static friction*.

Note. If an object is moving, then the force due to friction is $f = \mu_k N$ where μ_k is the *coefficient of kinetic friction*.

Note. If a mass sits on a ramp making angle θ with the horizontal, then a mass of weight w will start to slide if $\tan \theta = \mu_s$. The value of θ for which $\theta_s = \tan^{-1}(\mu_s)$ is the angle of static friction. Similarly, the angle of kinetic friction is $\theta_k = \tan^{-1}(\mu_k)$.

Examples. Page 446 Example 9.2. Page 457 Number 9.57.

Revised: 9/26/2018