Chapter 1. The Foundations: Logic, Sets, and Functions Section 1.1. Logic

Note. In this section we introduce elementary symbolic logic. We define propositions and put truth values on propositions.

Definition. A proposition is a statement that is either true or false, but not both. The *truth value* of a proposition is true, denoted T, if it is a true proposition and false, denoted F, if is a false proposition.

Definition 1.1.1. Let p be a proposition. The statement "It is not the case that p" is another proposition called the *negation* of p, denoted $\neg p$ (read "not p").

Note. Negation is an example of a logical operator. New propositions, called *compound propositions* can be formed from existing propositions using logical operators. A *truth table* gives the truth values of various propositions. For example, consider

p	$\neg p$
Т	F
F	Т

Definition 1.1.2. Let p and q be propositions. The proposition "p and q," denoted $p \wedge q$, is the proposition that is T when p and q are true and is false otherwise. This proposition is called the *conjunction* of p and q.

Definition 1.1.3. Let p and q be propositions. The proposition "p or q," denoted $p \lor q$, is the proposition that is false when p and q are false and is true otherwise. This proposition is called the *disjunction* of p and q.

Note. We have the truth table for $p \lor q$ and $p \land q$ as:

p	q	$p \vee q$	$p \wedge q$
Т	T	T	T
Т	F	F	T
F	T	F	T
F	F	F	F

Definition 1.1.4. Let p and q be propositions. The *exclusive or* of p and q, denoted $p \oplus q$, is the proposition that is T when exactly one of p and q is true and is false otherwise.

Note. We have the truth table for $p \oplus q$ as:

p	q	$p\oplus q$
Т	T	F
Т	F	F
F	T	T
F	F	F

Definition 1.1.5. Let p and q be propositions. The implication $p \rightarrow q$ (read "p implies q") is the proposition that is false when p is T and q is F and T otherwise. p is called the *hypothesis* (or *antecedent* ore *premise*) and q is called the *conclusion* (or *consequence*).

Note. We have the truth table for $p \rightarrow q$ as:

p	q	$p \rightarrow q$
Т	T	T
Т	F	F
F	T	T
F	F	T

Note. On page 6 the text gives some alternative ways to read $p \rightarrow q$ (such as "q whenever Pp"). The text also gives some warnings with the proposition "If you make more than \$25,000, then you must file a tax return."

1.1. Logic

Example. Page 11 number 6.

Definition 1.1.6. Let p and q be propositions. The *biconditional* $p \leftrightarrow q$ is the proposition that is true when p and q have the same truth values and is false otherwise.

Note. We have the truth table for $p \leftrightarrow q$ as:

p	q	$p \leftrightarrow q$
Т	T	T
Т	F	F
F	T	F
F	F	T

Definition. The *converse* of proposition $p \to q$ is the proposition $q \to p$. The *contrapositive* of proposition $p \to q$ is the proposition $\neg q \to \neg p$.

Note. We have the truth table for the converse and contrapositive of $p \rightarrow q$ as:

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p$	$\neg q$	$\neq q \rightarrow \neg p$
Т	T	T	Т	F	F	Т
Т	F	F	T	F	T	F
F	T	T	F	Т	F	T
F	F	Т	Т	Т	Т	Т

Notice that the truth value of $p \to q$ is the same as the truth value of $\neg q \to \neg p$. So the truth value of a proposition and its contrapositive are the same.

Example. Page 12 number 12. This is a biconditional proposition. The barber shaves those who do not shave themselves AND the barber shaves only those who shave themselves. Let p be "the barber shaves this person" and q be "this person" does not shave himself." Then the story can be represented as $p \leftrightarrow q$. Now suppose "this person" is the barber. Then we consider two cases:

- (1) If p is T and the barber shaves "this person" (i.e., himself). Then q is F and "this person (barber) does shave himself.
- (2) If p is F and the barber does <u>not</u> shave "this person" (himself), then q is T and "this person (barber) does not shave himself."

So we have the truth table:

Case	p	q	$p \leftrightarrow q$
(1)	T	F	F
(2)	F	T	F

In either case $p \leftrightarrow$ if false and so there can be no such barber.

Definition. A *bit* (for binary digit) has two possible values: 0 (for OFF or FALSE) and 1 (for ON or TRUE). We can therefore treat bits as statements and use logical connections with them (which are called *bit operations*).

Definition 1.1.7. A *bit string* is a sequence of bits. The length of this string is the number of bits in the string.

1.1. Logic

Note. When dealing with bit strings, we may use OR, AND, XOR for \lor , \land , \oplus , respectively.

Example. Page 13 number 30.

Example. Page 13 number 24.

Revised: 4/1/2019