Section 1.8. The Growth of Functions

Note. In this section we give several rate of growth definitions and illustrate them.

Definition 1.8.1. Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. Then f(x) is O(g(x)) (read "f(x) is of big-oh of g(x)") if there are constants C and k such that $|f(x)| \leq C|g(x)|$ for all x > k.

Example. Page 90 Number 2a.

Definition. If f(x) is O(g(x)) and g(x) is O(f(x)) then f and g are of the same order.

Theorem 1.8.1. Let $f(x) = z_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. Then f(x) is $O(x^n)$.

Proof. If x > 1 then

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\leq |a_n|x^n + |a_{n-1}|x^{n-1} + \dots + |a_1|x + |a_0|$$

$$\leq |a_n|x^n + |a_{n-1}|x^n + \dots + |a_1|x^n + |a_0x^n|$$

$$= x^n (|a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|).$$

So for x > 1, $|f(x)| \le Cx^n$ where $C = |a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|$.

Theorem 1.8.2. Suppose $f_1(x)$ is O(g(x)) and $f_2(x)$ is $O(g_2(x))$. Then $(f_1+f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$.

Proof. We hypothesize $|f_1(x)| \leq C_1|g(x)|$ for x > k, and $|f_2(x)| \leq C_2|g_2(x)|$ for $x > k_2$. Then

$$\begin{aligned} |(f_1 + f_2)(x)| &\leq |f_1(x)| + |f_2(x)| \\ &\leq C_1 |g_1(x)| + C_2 |g_2(x)| \text{ for } x > \max(k_1, k_2) \\ &\leq (C_1 + C_2) |g(x)| \text{ where } g(x) = \max(g_1(x), g_2(x)) \\ &= C |g(x)| \text{ where } C = \max(C_1, C_2). \end{aligned}$$

So $f_1 + f_2(x)$ is $O(\max(g_1(x), g_2(x)))$, as claimed.

Example. Page 90 Number 81, 8b, 8c.

Theorem 1.8.3. Suppose that $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$. Then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.

Proof. Suppose $|f_1(x)| \le C_1 g_1(x)$ for $x > k_1$ and $|f_2(x)| \le C_2 g_2(x)$ for $x > k_2$. Then

$$\begin{aligned} |(f_1 f_2)(x)| &= |f_1(x)| |f_2(x)| \\ &\leq C_1 |g_1(x)| C_2 |g_2(x)| \text{ for } x > \max(k_1, k_2) \\ &= C |(g_1 g_2)(x)| \text{ where } C = C_1 C_2. \end{aligned}$$

Example. Page 85 Example 5. Show $\log n!$ is $O(n \log n)$.

Definition 1.8.2. Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. Then f(x) is $\Omega(g(x))$ if there are positive constants C and k such that $|f(x)| \ge C|g(x)|$ for x > k. We say "f(x) is *big-Omega* of g(x)."

Example. Page 91 Number 30.

Definition 1.8.3. Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$. We say "f(x) is bog-Theta of g(x)" or "f(x) is of order g(x)."

Example. Page 91 Number 24a and 24e.

Theorem 1.8.4. Let $f(x) = a_x x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, $a_n \neq 0$. Then f(x) is of order x^n .

Example. Page 91 Number 38 and Page 92 Number 51b.

Revised: 4/1/2019