## Section 2.2. Complexity of Algorithms

**Note.** In analyzing a problem, we are interested in the amount of time and memory that it takes to run the algorithm on a computer. We will only consider the time and do so by counting the number of operations (comparisons, additions, multiplications, divisions, or other basic operations) used in executing the program.

**Note.** On pages 106–108, the text shows that the complexity of algorithms 1, 2, 3 of Section 2.1 are O(n), O(n), and  $O(\log n)$ , respectively (in a "worst case" [versus average] analysis).

**Definition.** We use big-oh notation in describing the Complexity of Algorithms. We use the following terminology:

| Complexity                   | Terminology            |
|------------------------------|------------------------|
| O(1)                         | constant complexity    |
| $O(\log n)$                  | logarithmic complexity |
| O(n)                         | linear complexity      |
| $O(n \log n)$                | $n \log n$ complexity  |
| $O(n^b), b \in \mathbb{Z}^+$ | polynomial complexity  |
| $O(b^n), b > 1$              | exponential complexity |
| O(n!)                        | factorial complexity   |

2.2. Complexity of Algorithms

2

**Definition.** An algorithm with worst-case complexity that takes polynomial time is *tractable*. If the worst-case complexity takes longer than polynomial time is intractable.

**Definition.** Problems for which a solution can be checked in polynomial time is in the class NP The class of NP-complete problems is a class of famous problems such that if there is a polynomial time worst-case solution of one, then all can be solved in polynomial time. So far, no such solution is known.

Solution. We have:

```
procedure exp2k(x: real number, k: positive integer)
    i := 1, P := x

while (i \leq k)
    P := P * P
    i = i + 1

{ x^{2^n} is output as P }
```

This requires 2k operations (3k if we consider the " $i \leq k$ " comparison). So the algorithm is O(k). Multiplying x by itself is  $O(2^k)$ , so the above algorithm is better.

Example. Page 112 Numbers 8 and 12.

Revised: 4/1/2019