
2.2. Complexity of Algorithms 1

Section 2.2. Complexity of Algorithms

Note. In analyzing a problem, we are interested in the amount of time and memory

that it takes to run the algorithm on a computer. We will only consider the

time and do so by counting the number of operations (comparisons, additions,

multiplications, divisions, or other basic operations) used in executing the program.

Note. On pages 106–108, the text shows that the complexity of algorithms 1, 2, 3

of Section 2.1 are O(n), O(n), and O(log n), respectively (in a “worst case” [versus

average] analysis).

Definition. We use big-oh notation in describing the Complexity of Algorithms.

We use the following terminology:

Complexity Terminology

O(1) constant complexity

O(log n) logarithmic complexity

O(n) linear complexity

O(n logn) n log n complexity

O(nb), b ∈ Z
+ polynomial complexity

O(bn), b > 1 exponential complexity

O(n!) factorial complexity



2.2. Complexity of Algorithms 2

Definition. An algorithm with worst-case complexity that takes polynomial time

is tractable. If the worst-case complexity takes longer than polynomial time is

intractable.

Definition. Problems for which a solution can be checked in polynomial time is

in the class NP The class of NP-complete problems is a class of famous problems

such that if there is a polynomial time worst-case solution of one, then all can be

solved in polynomial time. So far, no such solution is known.

Solution. We have:

procedure exp2k(x: real number, k: positive integer)

i := 1, P := x

while (i ≤ k)

P := P ∗ P

i = i + 1

{ x2n is output as P }

This requires 2k operations (3k if we consider the “i ≤ k” comparison). So the

algorithm is O(k). Multiplying x by itself is O(2k), so the above algorithm is better.

Example. Page 112 Numbers 8 and 12.

Revised: 4/1/2019


