Section 2.3. The Integers and Division

Note. In this section we take you intuitive understanding of the integers $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ as an informal definition and develop some properties of the integers.

Definition 2.3.1. If a and b are integers with $a \neq 0$, we say that a divides b if b = ac for some integer c. We denote this as $a \mid b$. If $a \mid b$ then a is a factor of b and b is a multiple of a.

Theorem 2.3.1. Let $a, b, c \in \mathbb{Z}$. Then

- 1. if $a \mid b$ and $a \mid c$ then $a \mid (b+c)$,
- **2.** if $a \mid b$ then $a \mid bc$ for all $c \in \mathbb{Z}$, and
- **3.** if $a \mid b$ and $b \mid c$ then $a \mid c$.

Definition 2.3.2. A positive integer p greater than 1 is *prime* if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is *composite*.

Theorem 2.3.2. The Fundamental Theorem of Arithmetic.

Every positive integer can be written uniquely as the product of primes. (This unique way of factoring the number is called its *prime factorization*.)

Theorem 2.3.3. If n is a positive composite integer, then n has a prime divisor less than or equal to \sqrt{n} .

Proof. If n is composite, then n = ab for some positive integers a and b. Now if both $a > \sqrt{n}$ and $b > \sqrt{n}$ then $ab > \sqrt{n}\sqrt{n} = n$, a contradiction. So either a or b is less than or equal to \sqrt{n} (say it is a). By Theorem 2.3.2, a has a prime factor and this factor is less than or equal to a, and so is $\leq \sqrt{n}$.

Example. Is 113 prime? (We need only check up through $\sqrt{113} < 11$ for prime factors.)

Theorem 2.3.4. The Division Algorithm.

Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

Definition 2.3.3. In Theorem 2.3.4, d is the *divisor*, a is the *dividend*, q is the *quotient*, and r is the *remainder*.

Definition 2.3.4. Let $a, b \in \mathbb{Z}$, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the *greatest common divisor* of a and b, denoted gcd(a, b).

Definition 2.3.5. Integers a and b are relatively prime if gcd(a, b) = 1.

Definition 2.3.6. The integers a_1, a_2, \ldots, a_n are pairwise relatively prime if $gcd(a_i, a_j) = 1$ for $1 \le i < j \le n$.

Note. We can find greatest common divisors using prime factorizations. For example, $gcd(40, 100) = gcd(2^{3}5, 2^{2}5^{2}) = 2^{2}5 = 20$.

Definition. The *least common multiple* of positive integers a and b is the smallest positive integer that is divisible by both a and b, denoted lcm(a, b).

Note. We can find least common multiples using prime factorizations. For example, $lcm(40, 100) = lcm(2^{3}5, 2^{2}5^{2}) = 2^{3}5^{2} = 200$.

Theorem 2.3.5. Let a and b be positive integers. Then ab = gcd(a, b) lcm(a, b).

Definition 2.3.8. Let $a \in \mathbb{Z}$ and let m be a positive integer $(m \in \mathbb{Z}^+)$. Denote the remainder when a is divided by m as " $a \pmod{m}$."

Definition 2.3.9. If a and b are integers and m is a positive integer, then a is congruent to b modulo m if $m \mid (a - b)$, denoted $a \equiv b \pmod{m}$.

Theorem 2.3.6. Let $m \in \mathbb{Z}^+$. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Proof. If $a \equiv b \pmod{m}$, then $m \mid (a - b)$. Therefore a - b = km for some $k \in \mathbb{Z}$. So a = b + km.

If a = b + km for some $k \in \mathbb{Z}$, then a - b = km and $m \mid (a - b)$. Therefore $a \equiv b \pmod{m}$.

Theorem 2.3.7. Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Proof. Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then there are integers s and t such that b = a + sm and d = c + tm. hence b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and bd = (a + sm)(c + tm) = ac + m(at + cs + stm). Therefore $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Revised: 4/3/2019